福田の数学〜慶應義塾大学2025経済学部第5問〜空間における平面と平面の交線 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2025経済学部第5問〜空間における平面と平面の交線

問題文全文(内容文):

$\boxed{5}$

座標平面の原点$O$を中心とする半径$1$の

球面を$C$、点$M(4,0,0)$を中心とする

半径$2$の球面上を$D$とする。

(1)$p,q$を実数とする。

$xy$平面上の直線$y=px+q$は、

球面$C$と$xy$平面が交わってできる円と

点$A_1$で接し、球面$D$と$xy$平面が交わって

できる円と点$A_2$で接し、かつ

$0 \lt p 1$を満たすとする。$p$と$q$の値を求めよ。

(2)$r,s$を実数とする。

$zx$平面上の直線$z=rx+s$は、球面$C$と

$zx$平面が交わってできる円と点$B_1$で接し、

球面$D$と$zx$平面が交わってできる円と点$B_2$で

接し、かつ、$r \lt -1$を満たすとする。

$r$と$s$の値を求めよ。

以下、点$E$は$\overrightarrow{ A_1 E }=(0,0,1)$を満たすとし、

$3$点$A_1,A_2,E$を通る平面を$\alpha$とする。

また、点$F$は$\overrightarrow{ B_1 E }=(0,1,0)$を満たすとし、

$3$点$B_1,B_2,F$を通る平面を$\beta$とする。

$\alpha$と$\beta$が交わってできる直線を

$\ell$とし、$\ell$と$xy$平面の交点を

$G,\ell$と$zx$平面の交点を$H$とする。

(3)$G$の座標を求めよ。

(4)$\ell$上の点$T$を、実数$t$を用いて

$\overrightarrow{OT}=\overrightarrow{OG}+t\overrightarrow{OH}$と表す。

$\triangle OMT$の面積が最小となる$t$の値の求めよ。

$2025$年慶應義塾大学経済学部過去問題
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

座標平面の原点$O$を中心とする半径$1$の

球面を$C$、点$M(4,0,0)$を中心とする

半径$2$の球面上を$D$とする。

(1)$p,q$を実数とする。

$xy$平面上の直線$y=px+q$は、

球面$C$と$xy$平面が交わってできる円と

点$A_1$で接し、球面$D$と$xy$平面が交わって

できる円と点$A_2$で接し、かつ

$0 \lt p 1$を満たすとする。$p$と$q$の値を求めよ。

(2)$r,s$を実数とする。

$zx$平面上の直線$z=rx+s$は、球面$C$と

$zx$平面が交わってできる円と点$B_1$で接し、

球面$D$と$zx$平面が交わってできる円と点$B_2$で

接し、かつ、$r \lt -1$を満たすとする。

$r$と$s$の値を求めよ。

以下、点$E$は$\overrightarrow{ A_1 E }=(0,0,1)$を満たすとし、

$3$点$A_1,A_2,E$を通る平面を$\alpha$とする。

また、点$F$は$\overrightarrow{ B_1 E }=(0,1,0)$を満たすとし、

$3$点$B_1,B_2,F$を通る平面を$\beta$とする。

$\alpha$と$\beta$が交わってできる直線を

$\ell$とし、$\ell$と$xy$平面の交点を

$G,\ell$と$zx$平面の交点を$H$とする。

(3)$G$の座標を求めよ。

(4)$\ell$上の点$T$を、実数$t$を用いて

$\overrightarrow{OT}=\overrightarrow{OG}+t\overrightarrow{OH}$と表す。

$\triangle OMT$の面積が最小となる$t$の値の求めよ。

$2025$年慶應義塾大学経済学部過去問題
投稿日:2025.05.24

<関連動画>

【数B】ベクトル:ベクトルの基本⑮直線の方程式を求める

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
A(3,5),方向ベクトルd=(1,2)のとき直線の方程式を求めよ。
A(1,3),B(2,4)のとき2点を通る直線の方程式を求めよ。
A(3,2),法線ベクトルd=(4,5)のとき直線の方程式を求めよ。
この動画を見る 

福田の1.5倍速演習〜合格する重要問題092〜神戸大学2018年度理系第5問〜回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#平面上のベクトルと内積#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数C#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 座標空間において、Oを原点とし、A(2,0,0), B(0,2,0), C(1,1,0)とする。$\triangle$OABを直線OCの周りに1回転してできる回転体をLとする。
(1)直線OC上にない点P(x,y,z)から直線OCにおろした垂線をPHとする。
$\overrightarrow{OH}$と$\overrightarrow{HP}$をx,y,zの式で表せ。
(2)点P(x,y,z)がLの点であるための条件は
$z^2≦2xy$ かつ $0≦x+y≦2$
であることを示せ。
(3)$1≦a≦2$とする。Lを平面x=aで切った切り口の面積S(a)を求めよ。
(4)立体${(x,y,z)|(x,y,z)\in L, 1≦x≦2}$の体積を求めよ。

2018神戸大学理系過去問
この動画を見る 

【数B】平面ベクトル:平面ベクトル存在範囲 △OABに対し,OP=sOA+tOBとする。 点Pが次の条件を満たしながら動くとき、点Pの存在範囲を求めよ。(1)s+t=4,s≧0,t≧0

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
教材: #中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\triangle OAB$に対して,点$P$が次の条件を満たしながら動くとき,点$P$の存在範囲を求めよ.

(1)$\overrightarrow{OP }=s \overrightarrow{OA}+t\overrightarrow{OB},s+t=4,s \geqq 0,t \geqq 0$
(2)$\overrightarrow{OP }=s \overrightarrow{OA}+t\overrightarrow{OB},s+t=4,s \geqq 0,t \geqq 0$
この動画を見る 

【数B】ベクトル:ベクトルの基本⑨最小値を求めたいときの絶対値の2乗

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
aベクトル$+tb$ベクトルの絶対値の最小値を取るtの値について
この動画を見る 

杏林大学2023医学部第2問訂正動画

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#空間ベクトル#ベクトルと平面図形、ベクトル方程式#空間ベクトル#学校別大学入試過去問解説(数学)#数学(高校生)#杏林大学#数C
指導講師: 福田次郎
問題文全文(内容文):
点 O を原点とする座標空間に 3 点 A(-I, 0 , ー 2 ), B(-2, ー 2 , ー 3 ), C(1, 2 , ー 2 )がある。
(a)ベクトル$\overrightarrow{ AB }と\overrightarrow{ AC }の内積は\overrightarrow{ AB }・\overrightarrow{ AC }=\fbox{ アイ }$であり、$\angle ABCの外接円の半径は\sqrt{\fbox{ウエ}}$である。$\angle ABC$の外接円の中心を点 P とすると、
$\overrightarrow{ AP }=\fbox{オ}\overrightarrow{ AB }+\frac{\fbox{カ}}{\fbox{キ}}\overrightarrow{ AC }$
が成り立つ。
(b)$\angle ABC$の重心を点 G とすると、$\overrightarrow{ OG }=\frac{\fbox{ク}}{\fbox{ケ}}(\overrightarrow{ OA }
+\overrightarrow{ OB }+\overrightarrow{ OC })$であり、線分OBを 2 : 1 に内分する点を Q とすると、$\overrightarrow{ AQ }=(\frac{\fbox{コサ}}{\fbox{シ}},\frac{\fbox{スセ}}{\fbox{ソ}},\fbox{タ})$となる。
(c)線分 OC を 2 : I に内分する点を R とし、 3 点 A, Q, R を通る平面を$\alpha$と直線OG との交点を S とする。点 S は平面にあることから、
$\overrightarrow{ OS }=t\overrightarrow{ OA }+u\overrightarrow{ OB }+v\overrightarrow{ OC }$
(ただし、$t,u,vはt+\frac{\fbox{チ}}{\fbox{ツ}}u+\frac{\fbox{テ}}{\fbox{ト}}v=1$を満たす実数)
と書けるので、$\overrightarrow{ OS }=\frac{\fbox{ナ}}{\fbox{ニ}}\overrightarrow{ OG }$となることがわかる。
平面$\alpha$上において、点Sは三角形AQRの$\fbox{ヌ}$に存在し、四面体 O-AQR の体積は四面体のO-ABCの体積の$frac{\fbox{ネ}}{\fbox{ノ}}$倍である。

2023杏林大学過去問
この動画を見る 
PAGE TOP