2次関数の決定【野本さんちのツトムくんがていねいに解説】 - 質問解決D.B.(データベース)

2次関数の決定【野本さんちのツトムくんがていねいに解説】

問題文全文(内容文):
172 次の条件を満たすような放物線の方程式を求めよ。
 (1) 放物線 $y=-3x^2+x-1$を平行移動した曲線で,頂点が点(-2,3)である。
 (2) 放物線$y=x^2-3x$を平行移動した曲線で,2点 (2,1),(4,5)を通る。
173 2つの放物線$y=x^2-3x, y=\dfrac{1}{2}x^2+ax+b$の頂点が一致するように,定数a,bの値を定めよ。
174(1) 放物線$y=x^2-3x+4$を平行移動した曲線で,点(2, 4)を通り,頂点が直線$y=2x+1$上にある放物線の方程式を求めよ。
  (2) 放物線$y=-2x^2+5x$を平行移動した曲線で,点(1, -3)を通り,頂点が放物線$y=x^2+4$上にある放物線の方程式を求めよ。
チャプター:

0:00 問題1(1)の解説
3:09 問題1(2)の解説
5:13 問題2の解説
8:11 問題3(1)の解説
11:55 問題3(2)の解説

単元: #数Ⅰ#2次関数#2次関数とグラフ#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
172 次の条件を満たすような放物線の方程式を求めよ。
 (1) 放物線 $y=-3x^2+x-1$を平行移動した曲線で,頂点が点(-2,3)である。
 (2) 放物線$y=x^2-3x$を平行移動した曲線で,2点 (2,1),(4,5)を通る。
173 2つの放物線$y=x^2-3x, y=\dfrac{1}{2}x^2+ax+b$の頂点が一致するように,定数a,bの値を定めよ。
174(1) 放物線$y=x^2-3x+4$を平行移動した曲線で,点(2, 4)を通り,頂点が直線$y=2x+1$上にある放物線の方程式を求めよ。
  (2) 放物線$y=-2x^2+5x$を平行移動した曲線で,点(1, -3)を通り,頂点が放物線$y=x^2+4$上にある放物線の方程式を求めよ。
投稿日:2023.05.08

<関連動画>

円 三角形の合同の証明 B

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#図形と計量#三角比(三角比・拡張・相互関係・単位円)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
同じ大きさの円
△ABC≡△AEDを示せ
*図は動画内参照

関西学院高等部
この動画を見る 

福田の数学〜明治大学2021年全学部統一入試IⅡAB第1問(3)〜九九の表の平均と分散

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#データの分析#データの分析#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(3)九九の表(1の段から9の段まで)に現れる81個の数の平均値$\boxed{\ \ シス\ \ }$であり、
分散は小数第一位を四捨五入して整数で求めると$\boxed{\ \ セソタ\ \ }$である。

2021明治大学全統過去問
この動画を見る 

2023高校入試解説22問目  二乗の和で表せ①昭和学院秀英(改)

アイキャッチ画像
単元: #数学(中学生)#数Ⅰ#数と式#式の計算(整式・展開・因数分解)#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$13^2 = 5^2 +12^2$のように$13^2$は2つの自然数の2乗の和で表せる。これを利用して$13^2$を3つの自然数の2乗の和で表せ。

2023昭和学院秀英高等学校
この動画を見る 

【数Ⅰ】【図形と計量】面積応用4 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#三角比への応用(正弦・余弦・面積)#数学(高校生)
教材: #4S数学#4S数学Ⅰ+AのB問題解説(新課程2022年以降)#図形と計量#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
次のような四角形$\rm ABCD$の面積を求めよ。
(1)円に内接し、$\rm AB=4,BC=3,CD=1,\angle B=60^{\circ}$
(2)円に内接し、$\rm AB=1,BC=2\sqrt2,CD=\sqrt2,\angle B=45^{\circ}$
この動画を見る 

【数Ⅰ】【図形と計量】三角比の相互関係式の使い方1 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅰ#図形と計量#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の式の値を求めよ。
(1)$ (\sin\theta+\cos\theta)²+(\sin\theta-\cos\theta)²$
(2) $(1-\sin\theta)(1+\sin\theta)-\frac{1}{1+\tan^2\theta}$
この動画を見る 
PAGE TOP