整数問題(自作) - 質問解決D.B.(データベース)

整数問題(自作)

問題文全文(内容文):
$x,y,n$は自然数
$9x^2-y^2=18^n$を満たす$(x,y)$の組数を$n$で表せ
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x,y,n$は自然数
$9x^2-y^2=18^n$を満たす$(x,y)$の組数を$n$で表せ
投稿日:2019.10.22

<関連動画>

福田の数学〜慶應義塾大学2024環境情報学部第2問〜2べき乗表現の個数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$b_k$を正の整数、$b_{k-1},\cdots,b_1,b_0$を負でない整数とする($k$は負でない整数であり、$k=0$のときは正の整数$b_0$のみを考える)。正の整数$n$に対して、$b_k,b_{k-1},\cdots,b_1,b_0$が$\ \ \ \ $
$\displaystyle 2^kb_k+2^{k-1}b_{k-1}+\cdots+2^2b_2+2b_1+b_0=\sum_{i=0}^k2^ib_i=n\ \\ $を満たすとき、$\langle b_k,b_{k-1},\cdots,b_1,b_0 \rangle$を$n$の2べき乗表現と呼ぶことにする。これは2進法による数の表現と似ているが、2進法の場合とは異なり、$b_i\ (i=0,1,\cdots,k)$は2以上の値も取りうる。そのため$n\geqq 2$において、$n$の2べき乗表現は1通りではない。$\\$
(1)$\ n=3$の2べき乗表現は$\langle 3 \rangle$と$\langle ア, イ\rangle$の2通りである。$\\ $(2)$\ \langle 3,2,1 \rangle$は$n=(ウエ)$の2べき乗表現である。$\\ $(3) $\ m$を正の整数とするとき、1から$m$までの整数を順に並べた$\langle 1,2,\cdots ,m \rangle$は$\ \ 2^{(m+オカ)}+(キク)m+(ケコ)\ $の2べき乗表現である。$\\ $ (4)$\ n$の2べき乗表現の個数を$a_n$とすると、$\ a_4=(サシ),\ a_5=(スセ),\ a_6=(ソタ),\cdots ,a_{10}=(チツ),\cdots , a_{20}=(テト)$である。
この動画を見る 

123123‥‥123の中には2021の倍数が必ずある

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$123123・・・・・・123$のように$123$が繰り返し並ぶ数の中には必ず$2021$の倍数があることを示せ.
この動画を見る 

9で割り切れるのはなぜ?京都大(改)

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$n^9 - n^3$は9で割り切れるのはなぜ?(n:整数)

京都大学
この動画を見る 

横浜市立(医)整数の基本問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とし,$1\leqq n \leqq 1000$である.
$n^5+1$が3の倍数となるnは何個か?

横浜市立(医)過去問
この動画を見る 

整数問題基本

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
整数$m,n$をすべて求めよ.
$m^4+n^4-2mn=13$
この動画を見る 
PAGE TOP