【わかりやすく解説】相加相乗平均の関係を使う不等式の証明②(高校数学Ⅱ) - 質問解決D.B.(データベース)

【わかりやすく解説】相加相乗平均の関係を使う不等式の証明②(高校数学Ⅱ)

問題文全文(内容文):
$a \gt 0,b \gt 0$のとき、不等式$(1+\displaystyle \frac{a}{b})(1+\displaystyle \frac{b}{a}) \geqq 4$が成り立つことを証明せよ
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
$a \gt 0,b \gt 0$のとき、不等式$(1+\displaystyle \frac{a}{b})(1+\displaystyle \frac{b}{a}) \geqq 4$が成り立つことを証明せよ
投稿日:2022.04.16

<関連動画>

【不等式はこれを抑えよう!】不等式の証明での注意点をすべてまとめました!〔数学 高校数学〕

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
不等式の証明での注意点について解説します。
この動画を見る 

√5が無理数であるユニークな証明 黄金比

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#式と証明#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt{ 5 }$が無理数であることを証明せよ
この動画を見る 

でんがんさん初登場 大阪大 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#式と証明#整数の性質#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
国立大学法人大阪大学

自然数$m,n$が
$\sqrt{n}\leqq\frac{m}{2}<\sqrt{n+1}$を満たす次を証明せよ
$(1)m^2-4n=0または1$
$(2)m<\sqrt{n}+$$\sqrt{n+1}<$$m+1$
この動画を見る 

中国Jr 数学Olympic あっと驚く解法も

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#式と証明#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ x^5=1,x \neq 1$とするとき,
$\dfrac{x}{1+x^2}+\dfrac{x^2}{1+x^4}+\dfrac{x^3}{1+x^6}+\dfrac{x^4}{1+x^8}$の値を求めよ.

中国jr数学オリンピック過去問
この動画を見る 

ただの整式の割り算

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$(3x^3-4x^2+10x+4)^2$を$x^2-2x+4$で割ったあまりを求めよ.$


この動画を見る 
PAGE TOP