福田の数学〜北海道大学2025理系第2問〜円に引いた2本の接線でできる四角形の面積の最大最小 - 質問解決D.B.(データベース)

福田の数学〜北海道大学2025理系第2問〜円に引いた2本の接線でできる四角形の面積の最大最小

問題文全文(内容文):
$\boxed{2}$

円$C_1:x^2+y^2=1$を考える。

実数$p,q$が$p^2+q^2 \gt 1$を満たすとき、

点$p(p,q)$から$C_1$に引いた$2$本の接線$\ell_1,\ell_2$の

接点をそれぞれ$Q_1(x_1,y_1), Q_2(x_2,y_2)$とする。

また、座標平面上の原点を$O(0,0)$とする。

(1)直線$\ell_1,\ell_2$,線分$OQ_1,OQ_2$で囲まれた

四角形の面積$S$を$p,q$を用いて表せ。

(2)点$P$が楕円

$C_2:\dfrac{x^2}{2}+\dfrac{y^2}{3}=1$

の上を動くとき、

(1)の四角形の面積$S$の最大値と最小値を求めよ。

$2025$年北海道大学理系過去問題
単元: #数A#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{2}$

円$C_1:x^2+y^2=1$を考える。

実数$p,q$が$p^2+q^2 \gt 1$を満たすとき、

点$p(p,q)$から$C_1$に引いた$2$本の接線$\ell_1,\ell_2$の

接点をそれぞれ$Q_1(x_1,y_1), Q_2(x_2,y_2)$とする。

また、座標平面上の原点を$O(0,0)$とする。

(1)直線$\ell_1,\ell_2$,線分$OQ_1,OQ_2$で囲まれた

四角形の面積$S$を$p,q$を用いて表せ。

(2)点$P$が楕円

$C_2:\dfrac{x^2}{2}+\dfrac{y^2}{3}=1$

の上を動くとき、

(1)の四角形の面積$S$の最大値と最小値を求めよ。

$2025$年北海道大学理系過去問題
投稿日:2025.03.22

<関連動画>

2020年問題 整数問題2020

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$自然数、すべて求めよ
$a^2+b^2=2020$
この動画を見る 

連続n個の自然数の積はn!で割り切れる。岩手大 整数・因数分解 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
岩手大学過去問題
a,b,cは連続した自然数
$a^2b+a^2c+ab^2+b^2c+bc^2+ac^2+2abc$は6の倍数であることを示せ。
この動画を見る 

福田のわかった数学〜高校1年生066〜場合の数(5)色々な順列

アイキャッチ画像
単元: #数A#場合の数と確率#場合の数#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{I}$ 場合の数(5) 並べ方色々
男子5人、女子3人(a,b,cとする)が次のように横一列に
並ぶ方法は何通りか。
(1)女子3人が隣り合う並び方
(2)どの女子2人も隣り合わない並び方
(3)aがbより左、bがcより左に現れる並び方
この動画を見る 

放物線と円 早稲田本庄 令和4年度 2022 入試問題100題解説96問目!

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
点Bの座標は?
*図は動画内参照

2022早稲田大学 本庄高等学院
この動画を見る 

福田の数学〜上智大学2024TEAP利用型理系第1問(1)〜不定方程式の解

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#ユークリッド互除法と不定方程式・N進法#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\boxed{1}(1)77x+52y=1$を満たす整数$x$、$y$の組のうち、$x$が正で最小の組は$(x,y)=(\boxed{ア},\boxed{イ})$である。
この動画を見る 
PAGE TOP