❗️ - 質問解決D.B.(データベース)

❗️

問題文全文(内容文):
4!=
3!=
2!=
1!=
0!=
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
4!=
3!=
2!=
1!=
0!=
投稿日:2022.03.30

<関連動画>

大阪市立大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#数B#大阪市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
20216大阪市立大学過去問題
x,y整数 n自然数
$x^2+y^2$が$3^{2n-1}$の倍数ならx,yともに$3^n$の倍数であることを示せ
①n=1のとき
②n=2のとき
③すべての自然数n
この動画を見る 

【高校数学】 数B-60 調和数列

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$1,\dfrac{1}{3},\dfrac{1}{5},x,y,・・・$が調和数列であるとき,
$x,y$の値と一般項を求めよう.

②第3項が$\dfrac{1}{2}$,第9項が$\dfrac{1}{5}$であるような
調和数列$\{a_n \}$の一般項を求めよう.
この動画を見る 

整数+3乗根の展開 山梨大

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#山梨大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2017年 山梨大学 過去問

$n$ 自然数
${(1+\sqrt[3]{2})}^x$は整数$a_n$,$b_n$,$c_n$を用いて
$a_n+b_n\sqrt[3]{2}+\frac{c_n}{\sqrt[3]{2}}$で表せることを証明
この動画を見る 

福田のおもしろ数学425〜8次方程式が等差数列をなす4つの実数解をもつ条件

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

方程式$x^8+ax^4+1=0$が

等差数列をなす$4$つの実数解をもつとき、

実数$a$の値を求めよ。
   
この動画を見る 

【高校数学】 数B-57 等差数列とその和①

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
各項に一定の数$d$を加えると,次の項が得られるとき,
この数列といい,$d$を①という.
このとき,すべての自然数$n$について,②$a_n+1=\quad $が成り立つ.
また,初項$a$,公差$d$の等差数列$\{a_n\}$の一般項は③$a_n=\quad $で
求めることができる.

次の等差数列の$\Box$に適する数を入れ,一般項を求めよ.

④$3,5,7,\Box,・・・$

⑤$\Box,11,8,5,・・・$

⑥$11,\Box,25,・・・$
この動画を見る 
PAGE TOP