福田の数学〜慶應義塾大学2022年総合政策学部第1問〜ガウス記号を含む数列の和 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2022年総合政策学部第1問〜ガウス記号を含む数列の和

問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 実数xに対して、x以下の最大の整数を[x]と表すことにする。\hspace{120pt}\\
いま、数列\left\{a_n\right\}を\hspace{290pt}\\
a_n=[\sqrt{2n}+\frac{1}{2}]\hspace{200pt}\\
と定義すると\hspace{316pt}\\
a_1=\boxed{\ \ ア\ \ },\ \ \ \ a_2=\boxed{\ \ イ\ \ },\ \ \ \ a_3=\boxed{\ \ ウ\ \ },\ \ \ \ a_4=\boxed{\ \ エ\ \ },\ \ \ \ a_5=\boxed{\ \ オ\ \ },\ \ \ \ a_6=\boxed{\ \ カ\ \ },\ \ \ \ \\
となる。このとき、a_n=10となるのは、\boxed{\ \ キク\ \ } \leqq n \leqq \boxed{\ \ ケコ\ \ }\ の場合に限られる。\hspace{20pt}\\
また、\sum_{n=1}^{\boxed{\ \ ケコ\ \ }}a_n=\boxed{\ \ サシスセ\ \ }である。\hspace{160pt}\\
\end{eqnarray}

2022慶應義塾大学総合政策学部過去問
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}}\ 実数xに対して、x以下の最大の整数を[x]と表すことにする。\hspace{120pt}\\
いま、数列\left\{a_n\right\}を\hspace{290pt}\\
a_n=[\sqrt{2n}+\frac{1}{2}]\hspace{200pt}\\
と定義すると\hspace{316pt}\\
a_1=\boxed{\ \ ア\ \ },\ \ \ \ a_2=\boxed{\ \ イ\ \ },\ \ \ \ a_3=\boxed{\ \ ウ\ \ },\ \ \ \ a_4=\boxed{\ \ エ\ \ },\ \ \ \ a_5=\boxed{\ \ オ\ \ },\ \ \ \ a_6=\boxed{\ \ カ\ \ },\ \ \ \ \\
となる。このとき、a_n=10となるのは、\boxed{\ \ キク\ \ } \leqq n \leqq \boxed{\ \ ケコ\ \ }\ の場合に限られる。\hspace{20pt}\\
また、\sum_{n=1}^{\boxed{\ \ ケコ\ \ }}a_n=\boxed{\ \ サシスセ\ \ }である。\hspace{160pt}\\
\end{eqnarray}

2022慶應義塾大学総合政策学部過去問
投稿日:2022.07.02

<関連動画>

室蘭工業大 漸化式 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#室蘭工業大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'17室蘭工業大学過去問題
$a_1=0,a_2=2$
$a_{n+2}=8(n+2)a_{n+1}-7(n^2+3n+2)a_n$
(1)$b_n=\frac{a_n}{n!}$として$b_n$を求めよ
(2)$a_n$を求めよ
この動画を見る 

漸化式と整数問題の融合

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は自然数である.
$a_1=10,a_{n+1}=2a_n+3^{n+1}$
$a_n$が7の倍数となるような$n$を求めよ.
この動画を見る 

福田の数学〜東京工業大学2023年理系第3問〜複素数の絶対値と偏角に関する確率

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#場合の数と確率#複素数平面#確率#漸化式#複素数平面#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数B#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 実数が書かれた3枚のカード$\boxed{0}$,$\boxed{1}$,$\boxed{\sqrt 3}$から無作為に2枚のカードを順に選び、出た実数を順に実部と虚部にもつ複素数を得る操作を考える。正の整数nに対して、この操作をn回繰り返して得られるn個の複素数の積を$z_n$で表す。
(1)|$z_n$|<5となる確率$P_n$を求めよ。
(2)$z_n^2$が実数となる確率$Q_n$を求めよ。

2023東京工業大学理系過去問
この動画を見る 

福田のおもしろ数学051〜10秒チャレンジ!〜階乗の付いた分数の計算

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\displaystyle \frac{1}{2!}+\displaystyle \frac{2}{3!}+\displaystyle \frac{3}{4!}+\displaystyle \frac{4}{5!}+\displaystyle \frac{5}{6!}$を計算してください。
この動画を見る 

学習院大 漸化式の基本問題

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#学習院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
学習院大学過去問題
数列$\{ a_n \}$の初項から第n項までの和を$S_n$とする
$S_n=2n^2+n-a_n$
$a_n$の一般項を求めよ
この動画を見る 
PAGE TOP