大阪大 虚数解を持つ3次方程式 - 質問解決D.B.(データベース)

大阪大 虚数解を持つ3次方程式

問題文全文(内容文):
$p,q$実数 $q \neq 0$
$p+qi$が$x^3+px+10=0$の解である。
$p,q$を求めよ

出典:2000年大阪大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$p,q$実数 $q \neq 0$
$p+qi$が$x^3+px+10=0$の解である。
$p,q$を求めよ

出典:2000年大阪大学 過去問
投稿日:2019.12.25

<関連動画>

【高校数学】数Ⅲ-7 複素数の積と商①

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
⑦$z_1=2\left(\cos\dfrac{\pi}{3}+i\sin\dfrac{\pi}{3}\right),z_2=5\left(\cos\dfrac{2}{3}\pi+i\sin\dfrac{2}{3}\pi\right)$のとき,
$z_1 z_2$と,$\dfrac{z_1}{z_2}$を求めよう.
この動画を見る 

福田のおもしろ数学113〜1分チャレンジ〜連立方程式を解こう

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
次の連立方程式を解け。ただし、$a$,$b$,$c$は0ではない異なる実数とする。
$\begin{array}{1}
a^3x+a^2y+az=1 ...①\\
b^3x+b^2y+bz=1 ...②\\
c^3x+c^2y+cz=1 ...③\\
\end{array}$
この動画を見る 

横浜市立大(医)3次方程式の虚数解の絶対値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#数と式#複素数と方程式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#一次不等式(不等式・絶対値のある方程式・不等式)#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3-x^2-x+k=0(k\gt 1)$である.

(1)実数解は1個であることを示せ.
(2)3つの解の絶対値はいずれも1より大きいことを示せ.

横浜市立(医)過去問
この動画を見る 

基本対称式 あれで出そうよ

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
\alpha+\beta+\delta=1 \\
\alpha\beta+\beta\delta+\delta\alpha=2,
\alpha\beta\delta=3
\end{array}
\right.
\end{eqnarray}$
を満たすとき,
①$\dfrac{1}{\alpha^2}+\dfrac{1}{\beta^2}+\dfrac{1}{\delta^2}$
②$\dfrac{1}{\alpha^3}+\dfrac{1}{\beta^3}+\dfrac{1}{\delta^3}$の値を求めよ.
この動画を見る 

【数Ⅱ】【複素数と方程式】高次方程式2 ※問題文は概要欄

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
教材: #4S数学#4S数学Ⅱ+BのB問題解説(新課程2022年以降)#複素数と方程式#中学受験教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
3次方程式x³-5x²+ax+b=0が3+2iを解にもつとき、実数の定数a, bの値と他の解を求めよ。

3次方程式x³+ax²+bx+3a-20=0が2重解-2をもつとき、実数の定数a, bの値と他の解を求めよ。

3次方程式x³+3x²+(a-4)x-a=0が2重解をもつとき、定数aの値を求めよ。
この動画を見る 
PAGE TOP