18大阪府教員採用試験(数学:整数) - 質問解決D.B.(データベース)

18大阪府教員採用試験(数学:整数)

問題文全文(内容文):
$2018$
$x\gt 0$の小数部分を$b$とし,$x^2+b^2=40$を満たす.
このとき,$b$の範囲と$x$の値を求めよ.

18大阪府教員採用試験(数学:整数)過去問
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#その他
指導講師: ますただ
問題文全文(内容文):
$2018$
$x\gt 0$の小数部分を$b$とし,$x^2+b^2=40$を満たす.
このとき,$b$の範囲と$x$の値を求めよ.

18大阪府教員採用試験(数学:整数)過去問
投稿日:2020.06.10

<関連動画>

福田の数学〜明治大学2021年理工学部第1問(1)〜2次方程式が整数を解にもつ条件

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#2次関数#複素数と方程式#2次方程式と2次不等式#整数の性質#約数・倍数・整数の割り算と余り・合同式#解と判別式・解と係数の関係#数学(高校生)#大学入試解答速報#数学#明治大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (1)\ aとbを正の整数とし、f(x)=ax^2-bx+4\ とおく。2次方程式f(x)=0は\\
異なる2つの実数解をもつとする。\\
(\textrm{a})2次方程式f(x)=0の2つの解がともに整数であるとき\\
\left\{
\begin{array}{1}
a=1  \\
b=\boxed{\ \ ア\ \ }
\end{array}
\right.  
または 
\left\{
\begin{array}{1}
a=\boxed{\ \ イ\ \ }\\
b=\boxed{\ \ ウ\ \ }
\end{array}
\right.\\
\\
である。\\
\\
(\textrm{b})b=7とする。2次方程式f(x)=0の2つの解のうち一方が整数であるとき、\\
a=\boxed{\ \ エ\ \ }であり、f(x)=0の2つの解は\\
\\
x=\boxed{\ \ エ\ \ },\ \frac{\boxed{\ \ カ\ \ }}{\boxed{\ \ キ\ \ }}\\
\\
である。
\end{eqnarray}

2021明治大学理工学部過去問
この動画を見る 

桐朋 整数問題

アイキャッチ画像
単元: #数A#場合の数と確率#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
a,bをそれぞれ1ケタの自然数とする。$2^a \times 3^b$が72の倍数とならないa,bの組は何通り?

桐朋高等学校
この動画を見る 

高校への数学執筆者 秋田洋和先生が解説!!(岡山県)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
「3ケタの正の整数で、百の位を2倍した数と下2ケタの数との和が7の倍数ならば、もとの整数は7の倍数である」なぜ?
百の位をa,十の位をb、一の位をcとする。

岡山県
この動画を見る 

お茶の水女子大(類) 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#お茶の水女子大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a^2+3b^2=2c^2$これを満たす自然数$(a,b,c)$は存在しないことを証明せよ

出典:お茶の水女子大学 過去問
この動画を見る 

整数問題 合同式 二項展開

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{n^5}{15}+\displaystyle \frac{n^4}{6}+\displaystyle \frac{n^3}{3}+\displaystyle \frac{n^2}{3}+\displaystyle \frac{n}{10}$は$n$が自然数なら自然数であることを示せ
この動画を見る 
PAGE TOP