式の値 虚数解 - 質問解決D.B.(データベース)

式の値 虚数解

問題文全文(内容文):
3次方程式$x^3+1 = 0$の虚数解の1つをαとするとき
$α^{300} + α^{200} + α^{100} + \frac {1}{α^{100}} + \frac {1}{α^{200}} +\frac {1}{α^{300}} = ?$

甲南大学
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
3次方程式$x^3+1 = 0$の虚数解の1つをαとするとき
$α^{300} + α^{200} + α^{100} + \frac {1}{α^{100}} + \frac {1}{α^{200}} +\frac {1}{α^{300}} = ?$

甲南大学
投稿日:2022.07.05

<関連動画>

北海道大 三次方程式 実数解条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3-3ax^2+bx+c$
一次関数$g(x)$
$f(x)=f'(x)g(x)-6x$を満たす
(1)
$b,c$を$a$で表せ

(2)
$f(x)=0$が相異なる3つの実数解をもつ$a$の範囲を求めよ

出典:2019年北海道大学 過去問
この動画を見る 

慈恵医大 複素数 3次方程式 有理数解の有無 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#東京慈恵会医科大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\theta=\displaystyle \frac{2}{9}\pi, \alpha=\cos \theta+i \sin \theta$
$\beta=\alpha+\alpha^8$

(1)
$\beta$は実数であることを示せ


(2)
$\beta$は整数係数の三次方程式の解である。
その方程式を求めよ。

(3)
(2)で求めた方程式は有理数の解をもたないことを示せ。

出典:2004年東京慈恵会医科大学 過去問
この動画を見る 

早稲田大 4次方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a,b$は自然数
$x^4+ax^3+(a+b)x^2+(2-a)x+1=0$
この方程式の解はすべて絶対値が1の複素数である。
$a,b$を求めよ

出典:2003年早稲田大学 過去問
この動画を見る 

福田の数学〜中央大学2022年理工学部第4問〜複素数平面上の共線条件と正三角形になる条件

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数平面#剰余の定理・因数定理・組み立て除法と高次方程式#複素数平面#図形への応用#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$t$を実数とし、xの3次式f(x) を
$f(x) = x^3 + (1-2t)x^2+(4-2t)x+4$
により定める。以下の問いに答えよ。
(1) 3次式f(x) を実数係数の2次式と1次式の積に因数分解し、$f(x) = 0$ が虚数の
解をもつようなtの範囲を求めよ。

実数tが (1) で求めた範囲にあるとき、方程式 $f(x) = 0$ の異なる2つの虚数解を
α, βとし、実数解をγとする。ただし、$α$の虚部は正、$β$の虚部は負とする。
以下、$α, β, γ$を複素数平面上の点とみなす。
(2) $α, β, γ$をtを用いて表せ。また、実数tが (1) で求めた範囲を動くとき、点$α$
が描く図形を複素数平面上に図示せよ。

(3) 3点$α, β, γ$が一直線上にあるようなtの値を求めよ。

(4)3点$α, β, γ$が正三角形の頂点となるようなtの値を求めよ。

2022中央大学理工学部過去問
この動画を見る 

練習問題18 どっかの教採の問題

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$f(\theta)=\sin2\theta+\sin\theta-\cos\theta+k\ (0\leqq \theta\leqq \pi)$
$f(\theta)=0$が異なる3つの解をもつような$k$の範囲を求めよ.
この動画を見る 
PAGE TOP