福田の数学〜早稲田大学2023年教育学部第4問〜円との最短距離が一定である点の軌跡 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2023年教育学部第4問〜円との最短距離が一定である点の軌跡

問題文全文(内容文):
$\Large\boxed{4}$ 座標平面上の点(0,1)を中心として半径1の円を$C$とする。点P($x$,$y$)が$y$≧0の範囲にあり、PからCまでの最短距離は$ay$であるとする。ただし$a$は0<$a$<1を満たす定数である。このとき、次の問いに答えよ。
(1)点Pが円$C$の円周上または外部にあるとき、P($x$,$y$)が満たす方程式を求めよ。
(2)点Pが円$C$の円周上または内部にあるとき、P($x$,$y$)が満たす方程式を求めよ。
(3)$x$=$\displaystyle\frac{1}{2}$かつ0≦$y$≦2を満たす点P($x$,$y$)がちょうど3個存在するような定数$a$の範囲を求めよ。
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 座標平面上の点(0,1)を中心として半径1の円を$C$とする。点P($x$,$y$)が$y$≧0の範囲にあり、PからCまでの最短距離は$ay$であるとする。ただし$a$は0<$a$<1を満たす定数である。このとき、次の問いに答えよ。
(1)点Pが円$C$の円周上または外部にあるとき、P($x$,$y$)が満たす方程式を求めよ。
(2)点Pが円$C$の円周上または内部にあるとき、P($x$,$y$)が満たす方程式を求めよ。
(3)$x$=$\displaystyle\frac{1}{2}$かつ0≦$y$≦2を満たす点P($x$,$y$)がちょうど3個存在するような定数$a$の範囲を求めよ。
投稿日:2023.10.20

<関連動画>

東京海洋大 三次方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#平均変化率・極限・導関数#学校別大学入試過去問解説(数学)#東京海洋大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3-12x^2+41x-m=0$
が3つの整数解をもつような
$m$をすべて求めよ。

東京海洋大過去問
この動画を見る 

複素関数論⑰ コーシーの積分定理の応用2 高専数学* 9(1)(2)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$c:$原点を中心とする半径$2$の円である.
以下を解け.

$\displaystyle \int_{c}^{} \dfrac{z}{z^2+1}dz$
この動画を見る 

福田の数学〜神戸大学2025理系第1問〜曲線と直線の共有点の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

$k$を実数とする。

$f(x)$と$g(x)$を

$f(x) = \vert x^3-x \vert,\quad g(x)=k(x+1)$

とおき、曲線$y=f(x)$を$C$、

直線$y=g(x)$を$\ell$とする。以下の問いに答えよ。

(1)曲線$C$の概形をかけ。

ただし、関数$f(x)$の極大値を調べる必要はない。

(2)曲線$C$と直線$\ell$がちょうど$4$つの

共有点をもつような$k$の値を求めよ。

$2025$年神戸大学理系過去問題
この動画を見る 

【数Ⅱ】図形と方程式:奇跡的な軌跡の解法③ PだけじゃないてQも動く!?

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
教材: #高校ゼミスタンダード#高校ゼミスタンダード数Ⅱ#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
点Qがx²+y²=16上を動くとき、点A(8,0)と点Qを結ぶ線分AQの中点Pの軌跡を求めよ。
この動画を見る 

重積分⑨-5【広義積分】(高専数学 微積II,数検1級1次解析対応)

アイキャッチ画像
単元: #数Ⅱ#数学検定・数学甲子園・数学オリンピック等#微分法と積分法#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
これを解け.
$\iint_D \ \dfrac{1}{\sqrt{x^2+y^2}}\ dx \ dy$
$D:0\leqq x\leqq y\leqq 1$
この動画を見る 
PAGE TOP