【数Ⅱ】点と直線の距離の公式【導出をしてみよう】 - 質問解決D.B.(データベース)

【数Ⅱ】点と直線の距離の公式【導出をしてみよう】

問題文全文(内容文):
点と直線の距離の公式の求め方に関して解説していきます.
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
点と直線の距離の公式の求め方に関して解説していきます.
投稿日:2022.02.14

<関連動画>

福田のわかった数学〜高校2年生032〜知って得する平行・垂直条件(1)

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{II} 知って得する平行・垂直条件(1)\\
2直線\\
ax-y-a+1=0 \ldots①\\
(a+2)x-ay+2a=0 \ldots②\\
が次の条件を満たすとき、定数aの値を求めよ。\\
\\
(1)平行である  (2)垂直である
\end{eqnarray}
この動画を見る 

福田の1.5倍速演習〜合格する重要問題049〜早稲田大学2019年度商学部第2問〜折れ線の長さの最小値問題

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#2次関数#2次関数とグラフ#図形と方程式#微分法と積分法#点と直線#円と方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
座標平面上において、放物線$y=x^2$上の点をP、円$(x-3)^2+(y-1)^2=1$上の
点をQ、直線$y=x-4$上の点をRとする。次の設問に答えよ。

(1)QR の最小値を求めよ。
(2)PR+QR の最小値を求めよ。

2019早稲田大学商学部過去問
この動画を見る 

【数Ⅱ】内分の公式・外分の公式を導出から丁寧に【公式を1つだけにする!?】

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ 数直線上の点A(3),B(6)について,線分ABを3:2に内分する点Pの座標を求めよ.$
この動画を見る 

福田の数学〜北海道大学2023年理系第5問〜中間値の定理と関数の増減PART1

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#点と直線#関数と極限#関数の極限#学校別大学入試過去問解説(数学)#数学(高校生)#北海道大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ a,bを$a^2$+$b^2$<1をみたす正の実数とする。また、座標平面上で原点を中心とする半径1の円をCとし、Cの内部にある2点A(a,0), B(0,b)を考える。
0<θ<$\frac{\pi}{2}$に対してC上の点P($\cos\theta$, $\sin\theta$)を考え、PにおけるCの接線に関してBと対称な点をDとおく。
(1)f(θ)=ab$\cos2\theta$+a$\sin\theta$-b$\cos\theta$とおく。方程式f(θ)=0の解が0<θ<$\frac{\pi}{2}$の範囲に少なくとも1つ存在することを示せ。
(2)Dの座標をa, $\theta$を用いて表せ。
(3)θが0<θ<$\frac{\pi}{2}$の範囲を動くとき、3点A,P,Dが同一直線上にあるようなθは少なくとも1つ存在することを示せ。また、このようなθはただ1つであることを示せ。

2023北海道大学理系過去問
この動画を見る 

福田のわかった数学〜高校2年生015〜直線の方程式と内心

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#点と直線#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 直線の方程式
$y=-\displaystyle \frac{3}{4}x+9, y=\displaystyle \frac{4}{3}x+9, y=\displaystyle \frac{3}{4}x-5$
で囲まれた三角形の内心の座標を求めよ。
この動画を見る 
PAGE TOP