【数Ⅱ】虚数を解に持つ3次方程式【3次方程式の解と係数の関係】 - 質問解決D.B.(データベース)

【数Ⅱ】虚数を解に持つ3次方程式【3次方程式の解と係数の関係】

問題文全文(内容文):
$ 3次方程式x^3-4x^2+ax+b=0の解の1つが3+iであるとき,
実際の定数a,bを求めよ.$
単元: #数Ⅱ#複素数と方程式#解と判別式・解と係数の関係#数学(高校生)
指導講師: めいちゃんねる
問題文全文(内容文):
$ 3次方程式x^3-4x^2+ax+b=0の解の1つが3+iであるとき,
実際の定数a,bを求めよ.$
投稿日:2022.01.24

<関連動画>

立命館(文系)複素数の計算

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#大学入試過去問(英語)#立命館大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^6=1$の4つの虚数解のうちの1つを$\alpha$とする.
$(1-\alpha)(1-\alpha^3)(1-\alpha^5)$の値は$\Box$か$\Box$か.

立命館大(文系)過去問
この動画を見る 

弘前大(医)3次方程式の解

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とする.
$x^3+3nx^2-(3n+2)=0$

(1)すべての自然数$n$において正の解はただ1つであることを示せ.
(2)正の解を$a_n$とする.$\displaystyle \lim_{n\to \infty} a_n$を求めよ.

弘前大(医)過去問
この動画を見る 

【高校数学】 数Ⅱ-44 剰余の定理と因数定理③

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$x^2+ax+b$が、$x+1$で割ると1余り、$x-1$で割ると3余るとき定数a,bの値を求めよう。

②整式$P(x)$を$x-1$で割ると3余り、$2x+1$で割ると4余る。$P(x)$を$(x-1)(2x+1)$で割ったときの余りを求めよう。
この動画を見る 

福田の数学〜上智大学2021年TEAP利用文系第1問(1)〜指数方程式と常用対数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#指数関数と対数関数#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#対数関数#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(1)$s$を正の実数として、$x,y$の連立方程式
$\left\{
\begin{array}{1}
4^x+9^y=5\\
2^x・3^y=s\\
\end{array}
\right.$
を考える。以下では$\log_{10}2=0.301,$
$\log_{10}3=0.4771$として計算せよ。

$(\textrm{a})$この連立方程式の解が2組あるための必要十分条件は

$0 \lt s \lt \frac{\boxed{\ \ ア\ \ }}{\boxed{\ \ イ\ \ }}$
である。

$(\textrm{b})\ s=2$のとき$x \lt y$となる解を$(x_0,\ y_0)$とする。
$y_0$を小数第3位で四捨五入した数の整数部分は$\boxed{\ \ ウ\ \ }$、
小数第1位は$\boxed{\ \ エ\ \ }$、小数第2位は$\boxed{\ \ オ\ \ }$である。

2021上智大学文系過去問
この動画を見る 

大学入試問題#544「これはさすがに合同式か・・・・」 京都大学(2023) #整式

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#複素数と方程式#整数の性質#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$x^{2023}-1$を$x^4+x^3+x^2+x+1$で割ったときの余りを求めよ

出典:2023年京都大学 入試問題
この動画を見る 
PAGE TOP