千葉大学、弘前大学 整数問題 メルセンヌ素数 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

千葉大学、弘前大学 整数問題 メルセンヌ素数 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
弘前大学過去問題
$n^5-n$は30の倍数であることを示せ。

千葉大学過去問題
$2^n-1$が素数ならnは素数であることを示せ。
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#千葉大学#数学(高校生)#弘前大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
弘前大学過去問題
$n^5-n$は30の倍数であることを示せ。

千葉大学過去問題
$2^n-1$が素数ならnは素数であることを示せ。
投稿日:2018.05.14

<関連動画>

14岡山県教員採用試験(数学:1-6 行列)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}-(6)$

$\begin{pmatrix}
a & b \\
c & d
\end{pmatrix}$
$A^2-A-12E=\theta$を満たすとき,
$(a+d,ad-bc)$を全て求めよ.
この動画を見る 

20年5月数学検定1級1次試験(合同式)

アイキャッチ画像
単元: #数A#数学検定・数学甲子園・数学オリンピック等#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学検定#数学検定1級#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$\boxed{1}$
$2018n \equiv 2(mod 1000)$をみたす最小の自然数$n$を求めよ.

20年5月数学検定1級1次試験(合同式)過去問
この動画を見る 

2023高校入試解説18問目 約数の個数が3個 西武文理

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
自然数nの約数は3個その和は57
n=?

2023西部学園文理高等学校
この動画を見る 

整数問題やや難

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
m,nを自然数とする.
$2^n+17=m^4$
,これを解け.
この動画を見る 

整数問題 明治大

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
明治大学 過去問

nを自然数とする.
$9n^5+15n^4+10n^3-4n$
が30の倍数であること示せ
この動画を見る 
PAGE TOP