大阪教育大 微分 3次関数 最大値 高校数学 Mathematics Japanese university entrance exam - 質問解決D.B.(データベース)

大阪教育大 微分 3次関数 最大値 高校数学 Mathematics Japanese university entrance exam

問題文全文(内容文):
'08大阪教育大学過去問題
$f(x)=-x^3-3x^2+3kx+3k+2$の$-1 \leqq x \leqq 1 $における最大値
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#微分法と積分法#解と判別式・解と係数の関係#剰余の定理・因数定理・組み立て除法と高次方程式#接線と増減表・最大値・最小値#学校別大学入試過去問解説(数学)#数学(高校生)#大阪教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
'08大阪教育大学過去問題
$f(x)=-x^3-3x^2+3kx+3k+2$の$-1 \leqq x \leqq 1 $における最大値
投稿日:2018.11.07

<関連動画>

07愛知県教員採用試験(数学:7番 複素数)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{7}$ $\vert Z \vert=1,Z^5=1$
$Z\leftarrow \in $を求めよ.
この動画を見る 

答えの数値で安心する問題 聖マリアンナ医科大

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#聖マリアンナ医科大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3+\sqrt[3]{4}X+4=0$
の3つの解をα,β,γとする
$(10\sqrt[3]{2}-α)(10\sqrt[3]{2}-β)(10\sqrt[3]{2}-γ)$
の値を求めよ。

聖マリアンナ医科大過去問
この動画を見る 

問題の背景を探る ハンガリーJr数学Olympic

アイキャッチ画像
単元: #複素数平面#円#三角関数#複素数#数学オリンピック
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ a^2+b^2=81$
$x^2+y^2=121$
$ax+by=99$
$ay-bx=?$
これを解け.

ハンガリーjr数学オリンピック過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題022〜一橋大学2016年度文系数学第5問〜ベクトルの絶対値の比の範囲

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#平面上のベクトル#解と判別式・解と係数の関係#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
平面上の2つのベクトル$\overrightarrow{ a }$と$\overrightarrow{ b }$は零ベクトルではなく、$\overrightarrow{ a }$と$\overrightarrow{ b }$のなす角度は
60°である。このとき
$r=\frac{|\overrightarrow{ a }+2\overrightarrow{ b }|}{|2\overrightarrow{ a }+\overrightarrow{ b }}$
のとりうる値の範囲を求めよ。

2016一橋大学文系過去問
この動画を見る 

福島大 複素数 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#数学(高校生)#福島大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$z \neq 1,z^7-1=0$
証明せよ。
(1)
$w=z+\displaystyle \frac{1}{z}$とすると、$w^3+w^2-2w-1=0$

(2)
$a=\cos \displaystyle \frac{2}{7}\pi$とすると、$8a^3+4a^2-4a-1=0$

出典:2005年福島大学 過去問
この動画を見る 
PAGE TOP