福田の一夜漬け数学〜図形と方程式〜領域(10)対称式の問題(その2)京都大学の問題に挑戦、高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜図形と方程式〜領域(10)対称式の問題(その2)京都大学の問題に挑戦、高校2年生

問題文全文(内容文):
${\Large\boxed{1}}$ 実数$x,y$が条件$x^2+xy+y^2=6$ を満たしながら動くとき、
$x^2y+xy^2-x^2-2xy-y^2+x+y$
が取り得る値の範囲を求めよ。
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 実数$x,y$が条件$x^2+xy+y^2=6$ を満たしながら動くとき、
$x^2y+xy^2-x^2-2xy-y^2+x+y$
が取り得る値の範囲を求めよ。
投稿日:2018.09.07

<関連動画>

福田の数学〜慶應義塾大学2023年看護医療学部第4問〜絶対値の付いた関数と領域における最大最小

アイキャッチ画像
単元: #大学入試過去問(数学)#図形と方程式#軌跡と領域#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 関数f(x)をf(x)=$\frac{1}{2}$($x^2$-$x$-3|$x$|)で定める。以下に答えなさい。
(1)y=f(x)のグラフをかきなさい。
(2)曲線y=f(x)上の点A(-3, f(-3))を通り、点Aにおける接線に垂直な直線lの方程式はy=$\boxed{\ \ ニ\ \ }$である。また、曲線と直線lは2つの共有点をもつが点Aとは異なる共有点の座標は$\boxed{\ \ ヌ\ \ }$である。さらに、曲線y=f(x)と直線lで囲まれた図形の面積は$\boxed{\ \ ネ\ \ }$である。
(3)連立不等式y≧f(x), y≦f(-3)の表す領域をDとする。点(x,y)がこの領域Dを動くとき、x+yは(x,y)=$\boxed{\ \ ノ\ \ }$のとき最大値$\boxed{\ \ ハ\ \ }$をとり、
(x,y)=$\boxed{\ \ ヒ\ \ }$のうち最小値$\boxed{\ \ フ\ \ }$をとる。

2023慶應義塾大学看護医療学部過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題061〜早稲田大学2019年度社会科学部第1問〜円の通過範囲と放物線と円の位置関係

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#円と方程式#軌跡と領域#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#大学入試解答速報#数学
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ $k$を実数とする。座標平面において方程式
$x^2+y^2+x+(2k+1)y+k^2+1=0$
の表す図形$C$を考える。次の問いに答えよ。
(1)$C$が円であるような$k$の値の範囲を求めよ。ただし、点も円とみなすものとする。
(2)$k$が変化するとき、$C$が通る点($x,y$)の存在領域を座標平面上に図示せよ。
(3)(2)で求めた領域の境界線と(1)で求めた円が共有点をもたないような、$k$の値の
範囲を求めよ。

2019早稲田大学社会科学部過去問
この動画を見る 

三角関数の基本 合成公式 図書館情報大

アイキャッチ画像
単元: #数Ⅱ#三角関数#関数と極限#関数(分数関数・無理関数・逆関数と合成関数)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sqrt3\sin 2x+2\sin^2x-1$,$0\leqq x\lt \pi$における最大値,最小値を求めよ.

1985図書館情報大過去問
この動画を見る 

福田の一夜漬け数学〜図形と方程式〜領域(6)直線の通過領域(基本)、高校2年生

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $m$が全ての実数を動くとき、直線$\ell:y=mx-m^2$
の通過する領域を図示せよ。
この動画を見る 

【短時間でポイントチェック!!】三角関数の合成〔現役講師解説、数学〕

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)
指導講師: 3rd School
問題文全文(内容文):
$r \sin(\theta+\alpha)$の形に表せ。
ただし、$r>0,-\pi<\alpha≦\pi$とする。
①$\sin\theta-\cos\theta$
②$\frac{\sqrt{3}}{2}\sin\theta+\frac{1}{2}\cos\theta$
この動画を見る 
PAGE TOP