京大院生 古賀真輝 フェルマーの小定理を証明する - 質問解決D.B.(データベース)

京大院生 古賀真輝 フェルマーの小定理を証明する

問題文全文(内容文):
フェルマーの小定理を証明していきます.
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
フェルマーの小定理を証明していきます.
投稿日:2020.08.19

<関連動画>

千葉大(医)整数問題 良問再投稿

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#千葉大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):

$3^n=k^3+1$


$3^n=k^2-40$
$k,n$自然数

出典:千葉大学大学院医学研究院・医学部 過去問
この動画を見る 

福田の入試問題解説〜東京大学2022年理系第2問〜約数と倍数と最大公約数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 数列\left\{a_n\right\}を次のように定める。\\
a_1=1,  a_{n+1}=a_n^2+1  (n=1,2,3,\ldots)\\
(1)正の整数nが3の倍数のとき、a_nは5の倍数となることを示せ。\\
(2)k,nを正の整数とする。a_nがa_kの倍数となるための必要十分条件をk,nを\\
用いて表せ。\\
(3)a_{2022}と(a_{8091})^2の最大公約数を求めよ。
\end{eqnarray}

2022東京大学理系過去問
この動画を見る 

横浜市立(医)整数の基本問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$を自然数とし,$1\leqq n \leqq 1000$である.
$n^5+1$が3の倍数となるnは何個か?

横浜市立(医)過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題050〜一橋大学2017年度文系第2問〜連立方程式の整数解

アイキャッチ画像
単元: #連立方程式#数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{2}}$ 連立方程式$\\$
$\left\{\begin{array}{1}
x^2=yz+7\\
y^2=zx+7\\
z^2=xy+7\\
\end{array}\right.\\$ 
を満たす整数の組(x,y,z)でx $\leqq$ y $\leqq$ zとなるものを求めよ。

2017一橋大学文系過去問
この動画を見る 

整式の剰余

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{2022}$を$(x-1)^3$で割った余りを求めよ.
この動画を見る 
PAGE TOP