奈良女子大 整数良問 - 質問解決D.B.(データベース)

奈良女子大 整数良問

問題文全文(内容文):
①自然数$n$が$b$と互いに素なら$n^2\equiv 1(mod 24)$
②$p^2-1=24q$を満たす素数$(p,q)$

2021奈良女子大過去問
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
①自然数$n$が$b$と互いに素なら$n^2\equiv 1(mod 24)$
②$p^2-1=24q$を満たす素数$(p,q)$

2021奈良女子大過去問
投稿日:2021.07.17

<関連動画>

数1

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$は自然数である.
$(m,n)$を求めよ.

①$m^2-n^2-2n=21$
②$m^3+n^3-3mn=3$
この動画を見る 

奈良教育大 超基本問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#奈良教育大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
7で割ると3余り,17で割ると8余る.自然数,3桁最大は?

奈良教育大過去問
この動画を見る 

素数に関する整数問題

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$x^3+5$が素数となる素数xは何コ?

京都教育大学附属高等学校
この動画を見る 

超良問⁉️だと思う整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
自然数$a,n$をすべて求めよ.
$a^{n+1}-(a+1)^n=2001$
この動画を見る 

早稲田大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n^2+1,2n^3+3,6n^2+5$
全てが素数となる自然数$n$をすべて求めよ

出典:早稲田大学 過去問
この動画を見る 
PAGE TOP