佐賀大 Japanese university entrance exam questions - 質問解決D.B.(データベース)

佐賀大 Japanese university entrance exam questions

問題文全文(内容文):
佐賀大学過去問題
n自然数
(1)$n! \geqq 2^{n-1}$
(2)$1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!} < 3$
 証明せよ
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#佐賀大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
佐賀大学過去問題
n自然数
(1)$n! \geqq 2^{n-1}$
(2)$1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!} < 3$
 証明せよ
投稿日:2018.08.03

<関連動画>

慶應義塾大 漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_{n}=n3^n_{100}C_{n}$
$b_{n}=n^22^n_{100}C_{n}$
$(n=1,2,3…100)$

(1)
$a_{n}$が最大となる$n$

(2)
$b_{n}$が最大となる$n$

出典:慶應義塾 過去問
この動画を見る 

芝浦工業大 漸化式 特性方程式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#数列#漸化式#学校別大学入試過去問解説(数学)#芝浦工業大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=9$
$S_{n+1}=4a_n-10$
一般項$a_n$を求めよ

出典:2005年芝浦工業大学 過去問
この動画を見る 

福田の一夜漬け数学〜数列・群数列(2)〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
数列 $1 2 1 3 2 $$1 4 $$3 $$2 $$1 $$5\cdots$について次を求めよ。
(1)第100項
(2)初項から第100項までの和


数列 $ \dfrac{2}{3} \dfrac{2}{5} \dfrac{4}{5} \dfrac{2}{7} \dfrac{4}{7} \dfrac{6}{7} \dfrac{2}{9}$$ \dfrac{4}{9}$$ \dfrac{6}{9}$$ \dfrac{8}{9}$$ \dfrac{2}{11}\cdots$について

次の問いに答えよ。
(1)$\displaystyle \frac{4}{15}$は第何項か。
(2)第100項は何か。
この動画を見る 

福田の数学〜早稲田大学2021年人間科学部第5問〜漸化式の作成と値の評価

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{5}}$ 半径$r_1=2$の円$O_1$に接する平行でない$2$つの直線がある。接点を$A,B$とし、$2$つの直線の交点を$P$とし、$\angle APB=\frac{\pi}{3}$とする。$O_1$より半径が小さく、$O_1$の中心を通り、直線$AP$と直線$BP$に接する円を$O_2$とする。同様に自然数$n$に対して、$O_n$より半径が小さく、$O_n$の中心を通り、直線$AP$と直線$BP$に接する円を$O_{n+1}$とする。$O_n$の半径を$r_n$とするとき、$\frac{r_n}{r_{n+1}}=\frac{\boxed{\ \ ノ\ \ }}{\boxed{\ \ ハ\ \ }}$ となる。次に、$n$個の円$O_1,O_2,\ldots,O_n$の面積の和を$S_n$とするとき、$S_{10}$の整数部分は$\boxed{\ \ ヒ\ \ }$である。

2021早稲田大学人間科学部過去問
この動画を見る 

鹿児島大(医他)数列の和 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#鹿児島大学#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sum_{k=1}^{n} \displaystyle \frac{2k-1}{2^k}$

出典:鹿児島大学 過去問
この動画を見る 
PAGE TOP