福田のおもしろ数学445〜関数方程式 - 質問解決D.B.(データベース)

福田のおもしろ数学445〜関数方程式

問題文全文(内容文):

正の実数の集合を$R^{+}$と表す。

$f:R^{+}→R^{+}$が任意の$x,y \in R^{+}$に対し

$y^2f(x)=f\left(\dfrac{x}{y}\right)$を満たしている。

このような$f(x)$をすべて求めなさい。
   
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

正の実数の集合を$R^{+}$と表す。

$f:R^{+}→R^{+}$が任意の$x,y \in R^{+}$に対し

$y^2f(x)=f\left(\dfrac{x}{y}\right)$を満たしている。

このような$f(x)$をすべて求めなさい。
   
投稿日:2025.03.22

<関連動画>

福田の数学〜明治大学2024理工学部第2問〜三角関数の増減と面積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#色々な関数の導関数#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$f(x)=\sin{3x}-\sqrt3\cos{2x}$とし、座標平面上の曲線$y=f(x)$を$C$とする。
(1) 点$(0,f(0))$における曲線$C$の接線の方程式は$y=\boxed{あ}$である。
(2) $t$についての整式$g(t)$で、$f'(x)=g(\sin x)\cos x$が成り立つものを求めると、$g(t)=\boxed{い}$である。
(3) $x>0$の範囲で、$f'(x)=0$となる$x$の値を小さい順に$x_1,x_2,x_3,\cdots$とすると、$x_1=\boxed{う},x_2=\boxed{え},x_3=\boxed{お}$である。
(4) $0\leqq x\leqq \pi$の範囲での$f(x)$の最大値は$\boxed{か}$、最小値は$\boxed{き}$である。
(5) (4)で定めた$x_1$と$x_3$に対して、2点$(x_1,f(x_1)),(x_3,f(x_3))$を通る直線を$l$とする。このとき、$x_1\leqq x\leqq x_3$の範囲において直線$l$と曲線$C$で囲まれた部分の面積は$\boxed{く}$である。
この動画を見る 

微分方程式⑧-1【非同次2階微分方程式の公式】(高専数学、数検1級)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
非同次2階微分方程式の公式を解説していきます.
この動画を見る 

【数Ⅲ】【微分とその応用】色々な関数の微分2 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
対数微分法により次の関数を微分せよ。ただし、aは定数とする。

y= (x+1)²/((x+2)³(x+3)⁴)
以下、略

次の関数を微分せよ。ただし x>0 とする。
y= x^sinx
以下、略

lim_(k→0) (1+k)^(1/k)=e を用いて、次の極限を求めよ。
lim_(x→0) ((log(1+x)/x)
以下、略
この動画を見る 

福田の1.5倍速演習〜合格する重要問題056〜神戸大学2017年度文系第1問〜3次関数の最大最小

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#接線と増減表・最大値・最小値#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large{\boxed{1}}$ tを正の実数とする。$f(x)=x^3+3x^2-3(t^2-1)x+2t^3-3t^2+1$とおく。
以下の問いに答えよ。
(1)2t^3-3t^2+1 を因数分解せよ。
(2)$f(x)$が極小値0をもつことを示せ。
(3)$-1 \leqq x \leqq 2$における$f(x)$の最小値$m$と最大値$M$をtの式で表せ。

2017神戸大学文系過去問
この動画を見る 

岩手大 微分の基本

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x-\sqrt{x^2}$は$x=0$で微分可能出ないことを示せ.

2018岩手大過去問
この動画を見る 
PAGE TOP