【整数問題】素数を扱う難問!2通りで解説!【奈良県立医科大学】 - 質問解決D.B.(データベース)

【整数問題】素数を扱う難問!2通りで解説!【奈良県立医科大学】

問題文全文(内容文):
aを2以上の整数、pを2より大きい素数とする。ある正の整数kに対して等式a^p-1 -1=p^kが成り立つのは、a=2,p=3のみであることを示せ。
チャプター:

00:00 導入部分
00:45 【解法1】n乗-n乗で因数分解
07:52 【解法2】〇〇に着目してから因数分解

単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
aを2以上の整数、pを2より大きい素数とする。ある正の整数kに対して等式a^p-1 -1=p^kが成り立つのは、a=2,p=3のみであることを示せ。
投稿日:2024.12.23

<関連動画>

【整数問題】難関大が好きなパターン!範囲を絞り込め!

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
abcd=a+b+c+dを満たす正の整数a,b,c,dを求めよ
この動画を見る 

宮崎大 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#宮崎大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n(n^2+a)$がすべての自然数$n$で6の倍数になる$a$の値を求めよ

出典:2019年宮崎大学 過去問
この動画を見る 

福田のおもしろ数学280〜3^x+4^y=5^zを満たす正の整数を求める

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$3^x+4^y=5^z$を満たす正の整数$x,y,z$は$(x,y,z)=(2,2,2)$以外に存在するか。
この動画を見る 

ただの分数

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$ \dfrac{3}{m}+\dfrac{4}{n}=\dfrac{1}{12}$,自然数(m,n)をすべて求めよ.
ただし,$\dfrac{3}{m},\dfrac{4}{m}$は既約分数である.
この動画を見る 

場合の数

アイキャッチ画像
単元: #数A#場合の数と確率#整数の性質#場合の数#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n,x,y,z$は$0$以上の整数
$2x+y+z=n$を満たす$(x,y,z)$は何組あるか求めよ
この動画を見る 
PAGE TOP