問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ AB = 1, \angle ABC = 90°,\angle BCA = 7.5°である△ABC の辺BC 上に AD = CD と\\
なるように点Dをとる。このとき、BD = \boxed{\ \ コ\ \ }, CD=\boxed{\ \ サ\ \ }である。したがって、\\
\tan 7.5° =\frac{1}{\boxed{\ \ コ\ \ }+\boxed{\ \ サ\ \ }}\hspace{150pt}\\
次に、正の実数kに対して、2直線y=3kx, y = 4kxのなす角度をθとする。た\hspace{30pt}\\
だし、0° \lt θ \lt 90°である。このとき、\tanθ = \boxed{\ \ シ\ \ }である。したがって、\tanθ は\\
k =\frac{1}{\boxed{\ \ ス\ \ }} のとき最大値\frac{1}{\boxed{\ \ セ\ \ }} をとる。また、k=\frac{1}{\boxed{\ \ ス\ \ }} のとき\boxed{\ \ ソ\ \ }を満たす。\hspace{9pt}\\
なお、必要ならば \hspace{260pt}\\
\sqrt2 = 1.4, \sqrt3=1.7..., \sqrt5=2.2, \sqrt6=2.4...\hspace{120pt} \\
を用いてよい。\hspace{270pt}\\
\\
\\
\boxed{\ \ コ\ \ },\boxed{\ \ サ\ \ }の解答群\\
ⓐ\sqrt2+\sqrt3\ \ \ ⓑ\sqrt2+\sqrt5\ \ \ ⓒ\sqrt2+\sqrt6\ \ \ ⓓ2+\sqrt3\ \ \ \\ ⓔ2+\sqrt5\ \ \ ⓕ2+\sqrt6\ \ \ ⓖ\sqrt3+\sqrt5\ \ \ ⓗ\sqrt5+\sqrt6\ \ \ \\
\\
\\
\boxed{\ \ シ\ \ }の解答群\\
ⓐ\frac{k}{1-12k^2}\ \ \ ⓑ\frac{k}{1+12k^2}\ \ \ ⓒ\frac{7k}{1-12k^2}\ \ \ ⓓ\frac{7k}{1+12k^2}\ \ \ \\
ⓔ\frac{12k^2}{1-12k^2}\ \ \ ⓕ\frac{12k^2}{1+12k^2}\ \ \ ⓖ\frac{12k^2}{1-7k^2}\ \ \ ⓗ\frac{12k^2}{1+7k^2}\ \ \ \\
\\
\\
\boxed{\ \ ス\ \ },\boxed{\ \ セ\ \ }の解答群\\
ⓐ2\ \ \ ⓑ2\sqrt2\ \ \ ⓒ3\ \ \ ⓓ2\sqrt3\ \ \ ⓔ4\ \ \ ⓕ3\sqrt2\ \ \ \\
ⓖ3\sqrt3 \ \ \ ⓗ4\sqrt2 \ \ \ ⓘ6\ \ \ ⓙ4\sqrt3 \ \ \ ⓚ7\ \ \ ⓛ7\sqrt2 \ \ \ \\
\\
\\
\boxed{\ \ ソ\ \ }の解答群\\
ⓐθ \gt 7.5°\ \ \ ⓑθ = 7.5°\ \ \ ⓒθ \lt 7.5°\ \ \
\end{eqnarray}
2022中央大学理工学部過去問
\begin{eqnarray}
{\large\boxed{2}}\ AB = 1, \angle ABC = 90°,\angle BCA = 7.5°である△ABC の辺BC 上に AD = CD と\\
なるように点Dをとる。このとき、BD = \boxed{\ \ コ\ \ }, CD=\boxed{\ \ サ\ \ }である。したがって、\\
\tan 7.5° =\frac{1}{\boxed{\ \ コ\ \ }+\boxed{\ \ サ\ \ }}\hspace{150pt}\\
次に、正の実数kに対して、2直線y=3kx, y = 4kxのなす角度をθとする。た\hspace{30pt}\\
だし、0° \lt θ \lt 90°である。このとき、\tanθ = \boxed{\ \ シ\ \ }である。したがって、\tanθ は\\
k =\frac{1}{\boxed{\ \ ス\ \ }} のとき最大値\frac{1}{\boxed{\ \ セ\ \ }} をとる。また、k=\frac{1}{\boxed{\ \ ス\ \ }} のとき\boxed{\ \ ソ\ \ }を満たす。\hspace{9pt}\\
なお、必要ならば \hspace{260pt}\\
\sqrt2 = 1.4, \sqrt3=1.7..., \sqrt5=2.2, \sqrt6=2.4...\hspace{120pt} \\
を用いてよい。\hspace{270pt}\\
\\
\\
\boxed{\ \ コ\ \ },\boxed{\ \ サ\ \ }の解答群\\
ⓐ\sqrt2+\sqrt3\ \ \ ⓑ\sqrt2+\sqrt5\ \ \ ⓒ\sqrt2+\sqrt6\ \ \ ⓓ2+\sqrt3\ \ \ \\ ⓔ2+\sqrt5\ \ \ ⓕ2+\sqrt6\ \ \ ⓖ\sqrt3+\sqrt5\ \ \ ⓗ\sqrt5+\sqrt6\ \ \ \\
\\
\\
\boxed{\ \ シ\ \ }の解答群\\
ⓐ\frac{k}{1-12k^2}\ \ \ ⓑ\frac{k}{1+12k^2}\ \ \ ⓒ\frac{7k}{1-12k^2}\ \ \ ⓓ\frac{7k}{1+12k^2}\ \ \ \\
ⓔ\frac{12k^2}{1-12k^2}\ \ \ ⓕ\frac{12k^2}{1+12k^2}\ \ \ ⓖ\frac{12k^2}{1-7k^2}\ \ \ ⓗ\frac{12k^2}{1+7k^2}\ \ \ \\
\\
\\
\boxed{\ \ ス\ \ },\boxed{\ \ セ\ \ }の解答群\\
ⓐ2\ \ \ ⓑ2\sqrt2\ \ \ ⓒ3\ \ \ ⓓ2\sqrt3\ \ \ ⓔ4\ \ \ ⓕ3\sqrt2\ \ \ \\
ⓖ3\sqrt3 \ \ \ ⓗ4\sqrt2 \ \ \ ⓘ6\ \ \ ⓙ4\sqrt3 \ \ \ ⓚ7\ \ \ ⓛ7\sqrt2 \ \ \ \\
\\
\\
\boxed{\ \ ソ\ \ }の解答群\\
ⓐθ \gt 7.5°\ \ \ ⓑθ = 7.5°\ \ \ ⓒθ \lt 7.5°\ \ \
\end{eqnarray}
2022中央大学理工学部過去問
単元:
#数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ AB = 1, \angle ABC = 90°,\angle BCA = 7.5°である△ABC の辺BC 上に AD = CD と\\
なるように点Dをとる。このとき、BD = \boxed{\ \ コ\ \ }, CD=\boxed{\ \ サ\ \ }である。したがって、\\
\tan 7.5° =\frac{1}{\boxed{\ \ コ\ \ }+\boxed{\ \ サ\ \ }}\hspace{150pt}\\
次に、正の実数kに対して、2直線y=3kx, y = 4kxのなす角度をθとする。た\hspace{30pt}\\
だし、0° \lt θ \lt 90°である。このとき、\tanθ = \boxed{\ \ シ\ \ }である。したがって、\tanθ は\\
k =\frac{1}{\boxed{\ \ ス\ \ }} のとき最大値\frac{1}{\boxed{\ \ セ\ \ }} をとる。また、k=\frac{1}{\boxed{\ \ ス\ \ }} のとき\boxed{\ \ ソ\ \ }を満たす。\hspace{9pt}\\
なお、必要ならば \hspace{260pt}\\
\sqrt2 = 1.4, \sqrt3=1.7..., \sqrt5=2.2, \sqrt6=2.4...\hspace{120pt} \\
を用いてよい。\hspace{270pt}\\
\\
\\
\boxed{\ \ コ\ \ },\boxed{\ \ サ\ \ }の解答群\\
ⓐ\sqrt2+\sqrt3\ \ \ ⓑ\sqrt2+\sqrt5\ \ \ ⓒ\sqrt2+\sqrt6\ \ \ ⓓ2+\sqrt3\ \ \ \\ ⓔ2+\sqrt5\ \ \ ⓕ2+\sqrt6\ \ \ ⓖ\sqrt3+\sqrt5\ \ \ ⓗ\sqrt5+\sqrt6\ \ \ \\
\\
\\
\boxed{\ \ シ\ \ }の解答群\\
ⓐ\frac{k}{1-12k^2}\ \ \ ⓑ\frac{k}{1+12k^2}\ \ \ ⓒ\frac{7k}{1-12k^2}\ \ \ ⓓ\frac{7k}{1+12k^2}\ \ \ \\
ⓔ\frac{12k^2}{1-12k^2}\ \ \ ⓕ\frac{12k^2}{1+12k^2}\ \ \ ⓖ\frac{12k^2}{1-7k^2}\ \ \ ⓗ\frac{12k^2}{1+7k^2}\ \ \ \\
\\
\\
\boxed{\ \ ス\ \ },\boxed{\ \ セ\ \ }の解答群\\
ⓐ2\ \ \ ⓑ2\sqrt2\ \ \ ⓒ3\ \ \ ⓓ2\sqrt3\ \ \ ⓔ4\ \ \ ⓕ3\sqrt2\ \ \ \\
ⓖ3\sqrt3 \ \ \ ⓗ4\sqrt2 \ \ \ ⓘ6\ \ \ ⓙ4\sqrt3 \ \ \ ⓚ7\ \ \ ⓛ7\sqrt2 \ \ \ \\
\\
\\
\boxed{\ \ ソ\ \ }の解答群\\
ⓐθ \gt 7.5°\ \ \ ⓑθ = 7.5°\ \ \ ⓒθ \lt 7.5°\ \ \
\end{eqnarray}
2022中央大学理工学部過去問
\begin{eqnarray}
{\large\boxed{2}}\ AB = 1, \angle ABC = 90°,\angle BCA = 7.5°である△ABC の辺BC 上に AD = CD と\\
なるように点Dをとる。このとき、BD = \boxed{\ \ コ\ \ }, CD=\boxed{\ \ サ\ \ }である。したがって、\\
\tan 7.5° =\frac{1}{\boxed{\ \ コ\ \ }+\boxed{\ \ サ\ \ }}\hspace{150pt}\\
次に、正の実数kに対して、2直線y=3kx, y = 4kxのなす角度をθとする。た\hspace{30pt}\\
だし、0° \lt θ \lt 90°である。このとき、\tanθ = \boxed{\ \ シ\ \ }である。したがって、\tanθ は\\
k =\frac{1}{\boxed{\ \ ス\ \ }} のとき最大値\frac{1}{\boxed{\ \ セ\ \ }} をとる。また、k=\frac{1}{\boxed{\ \ ス\ \ }} のとき\boxed{\ \ ソ\ \ }を満たす。\hspace{9pt}\\
なお、必要ならば \hspace{260pt}\\
\sqrt2 = 1.4, \sqrt3=1.7..., \sqrt5=2.2, \sqrt6=2.4...\hspace{120pt} \\
を用いてよい。\hspace{270pt}\\
\\
\\
\boxed{\ \ コ\ \ },\boxed{\ \ サ\ \ }の解答群\\
ⓐ\sqrt2+\sqrt3\ \ \ ⓑ\sqrt2+\sqrt5\ \ \ ⓒ\sqrt2+\sqrt6\ \ \ ⓓ2+\sqrt3\ \ \ \\ ⓔ2+\sqrt5\ \ \ ⓕ2+\sqrt6\ \ \ ⓖ\sqrt3+\sqrt5\ \ \ ⓗ\sqrt5+\sqrt6\ \ \ \\
\\
\\
\boxed{\ \ シ\ \ }の解答群\\
ⓐ\frac{k}{1-12k^2}\ \ \ ⓑ\frac{k}{1+12k^2}\ \ \ ⓒ\frac{7k}{1-12k^2}\ \ \ ⓓ\frac{7k}{1+12k^2}\ \ \ \\
ⓔ\frac{12k^2}{1-12k^2}\ \ \ ⓕ\frac{12k^2}{1+12k^2}\ \ \ ⓖ\frac{12k^2}{1-7k^2}\ \ \ ⓗ\frac{12k^2}{1+7k^2}\ \ \ \\
\\
\\
\boxed{\ \ ス\ \ },\boxed{\ \ セ\ \ }の解答群\\
ⓐ2\ \ \ ⓑ2\sqrt2\ \ \ ⓒ3\ \ \ ⓓ2\sqrt3\ \ \ ⓔ4\ \ \ ⓕ3\sqrt2\ \ \ \\
ⓖ3\sqrt3 \ \ \ ⓗ4\sqrt2 \ \ \ ⓘ6\ \ \ ⓙ4\sqrt3 \ \ \ ⓚ7\ \ \ ⓛ7\sqrt2 \ \ \ \\
\\
\\
\boxed{\ \ ソ\ \ }の解答群\\
ⓐθ \gt 7.5°\ \ \ ⓑθ = 7.5°\ \ \ ⓒθ \lt 7.5°\ \ \
\end{eqnarray}
2022中央大学理工学部過去問
投稿日:2022.10.16