福田の数学〜中央大学2022年理工学部第2問〜三角関数と2直線のなす角 - 質問解決D.B.(データベース)

福田の数学〜中央大学2022年理工学部第2問〜三角関数と2直線のなす角

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ AB = 1, \angle ABC = 90°,\angle BCA = 7.5°である△ABC の辺BC 上に AD = CD と\\
なるように点Dをとる。このとき、BD = \boxed{\ \ コ\ \ }, CD=\boxed{\ \ サ\ \ }である。したがって、\\
\tan 7.5° =\frac{1}{\boxed{\ \ コ\ \ }+\boxed{\ \ サ\ \ }}\hspace{150pt}\\
次に、正の実数kに対して、2直線y=3kx, y = 4kxのなす角度をθとする。た\hspace{30pt}\\
だし、0° \lt θ \lt 90°である。このとき、\tanθ = \boxed{\ \ シ\ \ }である。したがって、\tanθ は\\
k =\frac{1}{\boxed{\ \ ス\ \ }} のとき最大値\frac{1}{\boxed{\ \ セ\ \ }} をとる。また、k=\frac{1}{\boxed{\ \ ス\ \ }} のとき\boxed{\ \ ソ\ \ }を満たす。\hspace{9pt}\\
なお、必要ならば \hspace{260pt}\\
\sqrt2 = 1.4, \sqrt3=1.7..., \sqrt5=2.2, \sqrt6=2.4...\hspace{120pt} \\
を用いてよい。\hspace{270pt}\\
\\
\\
\boxed{\ \ コ\ \ },\boxed{\ \ サ\ \ }の解答群\\
ⓐ\sqrt2+\sqrt3\ \ \ ⓑ\sqrt2+\sqrt5\ \ \ ⓒ\sqrt2+\sqrt6\ \ \ ⓓ2+\sqrt3\ \ \ \\ ⓔ2+\sqrt5\ \ \ ⓕ2+\sqrt6\ \ \ ⓖ\sqrt3+\sqrt5\ \ \ ⓗ\sqrt5+\sqrt6\ \ \ \\
\\
\\
\boxed{\ \ シ\ \ }の解答群\\
ⓐ\frac{k}{1-12k^2}\ \ \ ⓑ\frac{k}{1+12k^2}\ \ \ ⓒ\frac{7k}{1-12k^2}\ \ \ ⓓ\frac{7k}{1+12k^2}\ \ \ \\
ⓔ\frac{12k^2}{1-12k^2}\ \ \ ⓕ\frac{12k^2}{1+12k^2}\ \ \ ⓖ\frac{12k^2}{1-7k^2}\ \ \ ⓗ\frac{12k^2}{1+7k^2}\ \ \ \\
\\
\\
\boxed{\ \ ス\ \ },\boxed{\ \ セ\ \ }の解答群\\
ⓐ2\ \ \ ⓑ2\sqrt2\ \ \ ⓒ3\ \ \ ⓓ2\sqrt3\ \ \ ⓔ4\ \ \ ⓕ3\sqrt2\ \ \ \\
ⓖ3\sqrt3 \ \ \ ⓗ4\sqrt2 \ \ \ ⓘ6\ \ \ ⓙ4\sqrt3 \ \ \ ⓚ7\ \ \ ⓛ7\sqrt2 \ \ \ \\
\\
\\
\boxed{\ \ ソ\ \ }の解答群\\
ⓐθ \gt 7.5°\ \ \ ⓑθ = 7.5°\ \ \ ⓒθ \lt 7.5°\ \ \
\end{eqnarray}

2022中央大学理工学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}\ AB = 1, \angle ABC = 90°,\angle BCA = 7.5°である△ABC の辺BC 上に AD = CD と\\
なるように点Dをとる。このとき、BD = \boxed{\ \ コ\ \ }, CD=\boxed{\ \ サ\ \ }である。したがって、\\
\tan 7.5° =\frac{1}{\boxed{\ \ コ\ \ }+\boxed{\ \ サ\ \ }}\hspace{150pt}\\
次に、正の実数kに対して、2直線y=3kx, y = 4kxのなす角度をθとする。た\hspace{30pt}\\
だし、0° \lt θ \lt 90°である。このとき、\tanθ = \boxed{\ \ シ\ \ }である。したがって、\tanθ は\\
k =\frac{1}{\boxed{\ \ ス\ \ }} のとき最大値\frac{1}{\boxed{\ \ セ\ \ }} をとる。また、k=\frac{1}{\boxed{\ \ ス\ \ }} のとき\boxed{\ \ ソ\ \ }を満たす。\hspace{9pt}\\
なお、必要ならば \hspace{260pt}\\
\sqrt2 = 1.4, \sqrt3=1.7..., \sqrt5=2.2, \sqrt6=2.4...\hspace{120pt} \\
を用いてよい。\hspace{270pt}\\
\\
\\
\boxed{\ \ コ\ \ },\boxed{\ \ サ\ \ }の解答群\\
ⓐ\sqrt2+\sqrt3\ \ \ ⓑ\sqrt2+\sqrt5\ \ \ ⓒ\sqrt2+\sqrt6\ \ \ ⓓ2+\sqrt3\ \ \ \\ ⓔ2+\sqrt5\ \ \ ⓕ2+\sqrt6\ \ \ ⓖ\sqrt3+\sqrt5\ \ \ ⓗ\sqrt5+\sqrt6\ \ \ \\
\\
\\
\boxed{\ \ シ\ \ }の解答群\\
ⓐ\frac{k}{1-12k^2}\ \ \ ⓑ\frac{k}{1+12k^2}\ \ \ ⓒ\frac{7k}{1-12k^2}\ \ \ ⓓ\frac{7k}{1+12k^2}\ \ \ \\
ⓔ\frac{12k^2}{1-12k^2}\ \ \ ⓕ\frac{12k^2}{1+12k^2}\ \ \ ⓖ\frac{12k^2}{1-7k^2}\ \ \ ⓗ\frac{12k^2}{1+7k^2}\ \ \ \\
\\
\\
\boxed{\ \ ス\ \ },\boxed{\ \ セ\ \ }の解答群\\
ⓐ2\ \ \ ⓑ2\sqrt2\ \ \ ⓒ3\ \ \ ⓓ2\sqrt3\ \ \ ⓔ4\ \ \ ⓕ3\sqrt2\ \ \ \\
ⓖ3\sqrt3 \ \ \ ⓗ4\sqrt2 \ \ \ ⓘ6\ \ \ ⓙ4\sqrt3 \ \ \ ⓚ7\ \ \ ⓛ7\sqrt2 \ \ \ \\
\\
\\
\boxed{\ \ ソ\ \ }の解答群\\
ⓐθ \gt 7.5°\ \ \ ⓑθ = 7.5°\ \ \ ⓒθ \lt 7.5°\ \ \
\end{eqnarray}

2022中央大学理工学部過去問
投稿日:2022.10.16

<関連動画>

難問です!三角関数と整数の融合問題!解けますか?【一橋大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
三角形$ABC$において,$ tanA,tanB,tanC$の値がすべて整数であるとき,それらの値を求めよ。

一橋大過去問
この動画を見る 

九州大 良問再投稿 合成公式

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\sin 10^{ \circ }$は$8x^3-6x+1=0$の解であることを示し、他の2解も求めよ

出典:1975年九州大学 過去問
この動画を見る 

九州大学 三倍角 高校数学 Japanese university entrance exam questions

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
九州大学過去問題
(1)$\sin10^{\circ}$は3次方程式$8x^3-6x+1=0$の解であることを示せ。
(2)他の2解を求めよ。
この動画を見る 

福田の数学〜九州大学2023年理系第4問〜加法定理が成り立つ関数を調べるPART2

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#三角関数#加法定理とその応用#微分とその応用#微分法#学校別大学入試過去問解説(数学)#数学(高校生)#九州大学#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ 以下の文章を読んで後の問いに答えよ。
三角関数$\cos x$, $\sin x$については加法定理が成立するが、逆に加法定理を満たす関数はどのようなものがあるだろうか。実数全体を定義域とする実数値関数$f(x)$, $g(x)$が以下の条件を満たすとする。
(A)すべてのx, yについて$f(x+y)$=$f(x)$$f(y)$-$g(x)$$g(y)$
(B)すべてのx, yについて$g(x+y)$=$f(x)$$g(y)$+$g(x)$$f(y)$
(C)$f(0)$$\ne$0
(D)$f(x)$, $g(x)$はx=0で微分可能で$f'(0)$=0, $g'(0)$=1
条件(A), (B), (C)から$f(0)$=1, $g(0)$=0 がわかる。以上のことから$f(x)$, $g(x)$はすべてのxの値で微分可能で、$f'(x)$=$-g(x)$, $g'(x)$=$f(x)$が成立することが示される。上のことから$\left\{f(x)+ig(x)\right\}$$(\cos x-i\sin x)$=1 であることが、実部と虚部を調べることによりわかる。ただし$i$は虚数単位である。よって条件(A), (B), (C), (D)を満たす関数は三角関数$f(x)$=$\cos x$, $g(x)$=$\sin x$であることが示される。
さらに、a, bを実数でb≠0とする。このとき条件(D)をより一般的な(D)', $f(x)$, $g(x)$はx=0で微分可能で$f'(0)$=a, $g'(0)$=b
におきかえて、条件(A), (B), (C), (D)'を満たす$f(x)$, $g(x)$はどのような関数になるか考えてみる。この場合でも、条件(A), (B), (C)から$f(0)$=1, $g(0)$=0が上と同様にわかる。ここで
$p(x)$=$e^{-\frac{a}{b}x}f(\frac{x}{b})$, $q(x)$=$e^{-\frac{a}{b}x}g(\frac{x}{b})$
とおくと、条件(A), (B), (C), (D)において、$f(x)$を$p(x)$に、$g(x)$を$q(x)$におきかえた条件が満たされる。すると前半の議論により、$p(x)$, $q(x)$がまず求まり、このことを用いると$f(x)$=$\boxed{\ \ ア\ \ }$, $g(x)$=$\boxed{\ \ イ\ \ }$が得られる。
(1)下線部①について、$f(0)$=1, $g(0)$=0であることを示せ。
(2)下線部②について、$f(x)$がすべてのxの値で微分可能な関数であり、
$f'(x)$=$-g(x)$となることを示せ。
(3)下線部③について、下線部①、下線部②の事実を用いることにより、
$\left\{f(x)+ig(x)\right\}$$(\cos x-i\sin x)$=1 となることを示せ。
(4)下線部④について、条件(B), (D)において、$f(x)$を$p(x)$に、$g(x)$を$q(x)$におきかえた条件が満たされることを示せ。つまり$p(x)$を$q(x)$が、
(B)すべてのx, yについて、$q(x+y)$=$p(x)$$q(y)$+$q(x)$$p(y)$
(D)$p(x)$, $q(x)$はx=0 で微分可能で$p'(0)$=0, $q'(0)$=1
を満たすことを示せ。また空欄$\boxed{\ \ ア\ \ }$, $\boxed{\ \ イ\ \ }$に入る関数を求めよ。

2023九州大学理系過去問
この動画を見る 

気づけば一瞬!!!

アイキャッチ画像
単元: #数Ⅱ#三角関数#加法定理とその応用#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\cos\dfrac{\pi}{11}\cos\dfrac{2\pi}{11}\cos\dfrac{3\pi}{11}\cos\dfrac{4\pi}{11}\cos\dfrac{5\pi}{11}$の値を求めよ.

この動画を見る 
PAGE TOP