【数B】ベクトル:ベクトルの基本⑥内積の基本計算2 成分を用いて計算する - 質問解決D.B.(データベース)

【数B】ベクトル:ベクトルの基本⑥内積の基本計算2 成分を用いて計算する

問題文全文(内容文):
内積の基本計算(直角三角形ABCにおける内積計算)に関して解説していきます.
チャプター:

0:00 オープニング
0:11 内積計算
1:49 始点を揃えて考える
3:18 エンディング

単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
内積の基本計算(直角三角形ABCにおける内積計算)に関して解説していきます.
投稿日:2022.06.20

<関連動画>

福田の数学〜東京工業大学2023年理系第5問(PART1)〜4直線に接する球面の決定

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#平面上のベクトル#図形と方程式#点と直線#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#東京工業大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ xyz空間の4点A(1,0,0), B(1,1,1), C(-1,1,-1), D(-1,0,0)を考える。
(1)2直線AB,BCから等距離にある点全体のなす図形を求めよ。
(2)4直線AB, BC, CD, DAに共に接する球面の中心と半径の組を全て求めよ。

2023東京工業大学理系過去問
この動画を見る 

福田の数学〜東京理科大学2022年理工学部第2問〜位置ベクトルと面積比

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#学校別大学入試過去問解説(数学)#東京理科大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{2}}平面上に三角形ABCと点Pがあり、点Pは、ある正の定数tに対して\\
3t\overrightarrow{ AP }+t^2\overrightarrow{ BP }+4\overrightarrow{ CP }=\overrightarrow{ 0 }\hspace{100pt}\\
を満たすとする。\overrightarrow{ b } =\overrightarrow{ AB },\overrightarrow{ c } =\overrightarrow{ AC }とおく。\hspace{95pt}\\
(1)\overrightarrow{ BP }を、\overrightarrow{ b }と\overrightarrow{ AP }を用いて表せ。\hspace{130pt}\\
(2)\overrightarrow{ AP }=v\ \overrightarrow{ b }+w\ \overrightarrow{ c }となる実数v,wを、tを用いて表せ。\hspace{47pt}\\
(3)直線APと直線BCの交点をDとする。\hspace{103pt}\\
\overrightarrow{ AD }=x\ \overrightarrow{ b }+y\ \overrightarrow{ c }となる実数x,yを、tを用いて表せ。\hspace{60pt}\\
(4)\frac{S_2}{S_1}を、tを用いて表せ。\hspace{156pt}\\
(5)tが正の実数全体を動くとき、\frac{S_2}{S_1}が最大となるtの値を求めよ。\hspace{13pt}\\
\end{eqnarray}

2022東京理科大学理工学部過去問
この動画を見る 

【数学】中高一貫校用問題集:平面上のベクトル:ベクトル方程式:ベクトル方程式の復習①

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#ベクトルと平面図形、ベクトル方程式#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
$△ABC$(それぞれの位置ベクトルを$a、b、c$とする)。
この時、次の問いに答えよ。
(1)点$A$から辺$BC$に下した垂線のベクトル方程式を求めよ。
※(2)は②の動画で説明
この動画を見る 

【数B】ベクトル:ベクトルの基本⑨最小値を求めたいときの絶対値の2乗

アイキャッチ画像
単元: #平面上のベクトル#平面上のベクトルと内積#数学(高校生)#数C
指導講師: 理数個別チャンネル
問題文全文(内容文):
aベクトル$+tb$ベクトルの絶対値の最小値を取るtの値について
この動画を見る 

福田の数学〜立教大学2021年経済学部第1問(4)〜ベクトル方程式と三角形の面積

アイキャッチ画像
単元: #大学入試過去問(数学)#平面上のベクトル#ベクトルと平面図形、ベクトル方程式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (4)\ 三角形OABにおいて、2つのベクトル\overrightarrow{ OA }, \overrightarrow{ OB }は|\overrightarrow{ OA }|=3, |\overrightarrow{ OB }|=2,\\
\overrightarrow{ OA }・\overrightarrow{ OB }=2 を満たすとする。実数s,tが\\
s \geqq 0, t \geqq 0, 2s+t \leqq 1\\
を満たすとき、\overrightarrow{ OP }=s\ \overrightarrow{ OA }+t\ \overrightarrow{ OB }
と表されるような点Pの\\
存在する範囲の面積は\ \boxed{\ \ カ\ \ }\ である。
\end{eqnarray}

2021立教大学経済学部過去問
この動画を見る 
PAGE TOP