問題文全文(内容文):
$\displaystyle \sum_{k=1}^{2022}10^{10^k}=10^{10}+10^{10^2}+・・・・・・+10^{10^{2022}}$を$7$で割った余りを求めよ.
$\displaystyle \sum_{k=1}^{2022}10^{10^k}=10^{10}+10^{10^2}+・・・・・・+10^{10^{2022}}$を$7$で割った余りを求めよ.
単元:
#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師:
鈴木貫太郎
問題文全文(内容文):
$\displaystyle \sum_{k=1}^{2022}10^{10^k}=10^{10}+10^{10^2}+・・・・・・+10^{10^{2022}}$を$7$で割った余りを求めよ.
$\displaystyle \sum_{k=1}^{2022}10^{10^k}=10^{10}+10^{10^2}+・・・・・・+10^{10^{2022}}$を$7$で割った余りを求めよ.
投稿日:2021.09.20