二階微分>0 なぜ下に凸・指数関数の微分 名古屋大の問題の補足 - 質問解決D.B.(データベース)

二階微分>0 なぜ下に凸・指数関数の微分 名古屋大の問題の補足

問題文全文(内容文):
指数関数の微分の補足 解説動画です
単元: #大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
指数関数の微分の補足 解説動画です
投稿日:2019.05.13

<関連動画>

【数Ⅲ】【微分とその応用】平均値の定理の利用2 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
平均値の定理を用いて、次のことが成り立つことを証明せよ。
(1) 1/e²<a<b<1のとき、a-b<blogb-aloga<b-a
(2) |sinα-sinβ|≦|αーβ|
この動画を見る 

【数Ⅲ-161】定積分で表された関数④(最大最小編)

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(定積分で表された関数④・最大最小編)

①関数$f(x)=\int_0^1(e^t-xt)^2dt$の最小値とそのときの$x$の値を求めよ。

②積分$\int_0^\frac{\pi}{2}(\sin x-kx)^2dx$の値を最小にする実数$k$の値と、そのときの積分値を求めよ。

この動画を見る 

岩手大 微分 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
岩手大学過去問題
$f(x)=-x^4+a(x-2)^2 \quad (a>0)$
(1)f(x)が極小値をもつためのaの範囲
(2)f(x)が極小値を持つとき、その極小値を与えるxの値をtとする。2<t<3を示せ。
(3)(2)のとき、f(t)>-27を示せ。
この動画を見る 

大学入試問題#917「さすがに落とせん」

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\sqrt{ 1+x+x^2 }$
$x=1$における微分係数を定義に従って求めよ

出典:1965年京都大学
この動画を見る 

練習問題33 数検1級1次 微分方程式

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\dfrac{dy}{dx}=(x+y)^2$
の一般解を求めよ.
この動画を見る 
PAGE TOP