福田のおもしろ数学561〜三角形の3つの内角を度数法で表したときの論証その2 - 質問解決D.B.(データベース)

福田のおもしろ数学561〜三角形の3つの内角を度数法で表したときの論証その2

問題文全文(内容文):

三角形の$3$つの内角を度数表で測ったものを

$x,y,z$とする。次を証明して下さい。

$\dfrac{x}{y},\dfrac{y}{z},\dfrac{z}{x}$のうち、

ちょうど$1$つだけ有理数

$\Rightarrow x,y,z$はすべて無理数
    
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

三角形の$3$つの内角を度数表で測ったものを

$x,y,z$とする。次を証明して下さい。

$\dfrac{x}{y},\dfrac{y}{z},\dfrac{z}{x}$のうち、

ちょうど$1$つだけ有理数

$\Rightarrow x,y,z$はすべて無理数
    
投稿日:2025.07.16

<関連動画>

ネイピア数の分数式がスッキリきれいな数字に

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\dfrac{e}{\sqrt e}・\dfrac{\sqrt[3]{e}}{\sqrt[4]{e}}・\dfrac{\sqrt[5]{e}}{\sqrt[6]{e}}・・・・・・=?$
この動画を見る 

福田の数学〜慶應義塾大学2024年看護医療学部第1問(3)〜対数不等式

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (3)不等式$(\log_4x)^2$-$\log_8x^2$+$\frac{1}{3}$<0 を解くと$\boxed{\ \ エ\ \ }$である。
この動画を見る 

福田の数学〜名古屋大学2023年理系第4問〜二項係数と整式の展開

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#名古屋大学
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{4}$ $n$を正の整数とし、$n$次の整式$P_n(x)$=$x(x+1)...(x+n-1)$を展開して$P_n(x)$=$\displaystyle\sum_{m=1}^n {}_nB_mx^m$と表す。
(1)等式$\displaystyle\sum_{m=1}^n {}_nB_m$=$n!$ を示せ。
(2)等式$P_n(x+1)$=$\displaystyle\sum_{m=1}^n$(${}_nB_m・{}_mC_0$+${}_nB_m・{}_mC_1x$+...+${}_nB_m・{}_mC_mx^m)$ を示せ。
ただし、${}_mC_0$, ${}_mC_1$,..., ${}_mC_m$は二項係数である。
(3)k=1,2,...,nに対して、等式$\displaystyle\sum_{j=k}^n$${}_nB_j・{}_jC_k$=${}_{n+1}B_{k+1}$を示せ。

2023名古屋大学理系過去問
この動画を見る 

福田のおもしろ数学328〜多項式の性質を繰り返し用いて多項式を求める

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理
指導講師: 福田次郎
問題文全文(内容文):
実数係数の多項式$P(x)$が任意の実数$\theta$に対して$P(\cos \theta +\sin \theta)=P(\cos \theta -\sin \theta)$を満たすとき、$P(x)=a_0+a_1 (1-x^2)^2+a_2 (1-x^2)^4 +\cdots+a_n (1-x^2)^{2n}$であることを証明して下さい。($a_0 ,a_1 ,\cdots ,a_n$は実数、$n$は0以上の整数)
この動画を見る 

福田の数学〜立教大学2024年経済学部第1問(2)〜恒等式の未定係数を決定する方法

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#恒等式・等式・不等式の証明#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
等式$\frac{3x^2-x+4}{(x+1)^3}=\frac{a}{(z+1)^3}+\frac{b}{(x+1)^2}+\frac{c}{x+1}$が$x$についての恒等式となるような定数$a, b, c$は$a=\fbox{ウ}, b=\fbox{エ}, c=\fbox{オ}$である。
この動画を見る 
PAGE TOP