大学入試問題#145 自治医科大(2004) 整数問題 - 質問解決D.B.(データベース)

大学入試問題#145 自治医科大(2004) 整数問題

問題文全文(内容文):
$x^2-3ax+2a-3=0$が2つの整数解をもつように$a$が定まっている。
$a^2+3$の値を求めよ。

出典:2004年自治医科大学 入試問題
チャプター:

05:24~ 解答のみ掲載 約10秒間隔

単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#自治医科大学
指導講師: ますただ
問題文全文(内容文):
$x^2-3ax+2a-3=0$が2つの整数解をもつように$a$が定まっている。
$a^2+3$の値を求めよ。

出典:2004年自治医科大学 入試問題
投稿日:2022.03.19

<関連動画>

福田の共通テスト解答速報〜2022年共通テスト数学IA問題4。整数解の問題。

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#センター試験・共通テスト関連#共通テスト#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
第4問 
(1)$5^4=625$を$2^4$で割った時の余りは1に等しい。このことを用いると、不定方程式

$5^4x-2^4y=1 \ldots①$
の整数解のうち、xが正の整数で最小になるのは$x=\boxed{\ \ ア\ \ },y=\boxed{\ \ イウ\ \ }$であることがわかる。
また、①の整数解のうち、xが2桁の正の整数で最小になるのは
$x=\boxed{\ \ エオ\ \ }, y=\boxed{\ \ カキク\ \ }$である。

(2)次に、$625^2$を$5^5$で割った時の余りと、$2^5$で割った時の余りについて考えてみよう。
まず、
$625^2=5^{\boxed{ケ}}$
であり、また$m=\boxed{\ \ イウ\ \ }$とすると、$625^2=2^{\boxed{ケ}}\ m^2+2^{\boxed{コ}}\ m+1$である。
これらにより、$625^2$を$5^5$で割った時の余りと、$2^5$で割った時の余りがわかる。

(3)(2)の考察は、不定方程式
$5^5x-2^5y=1 \ldots②$
の整数解を調べるために利用できる。x,yを②の整数解とする。
$5^5x$は$5^5$の倍数であり、$2^5$で割った時の余りは1となる。よって(2)により、
$5^5x-625^2$は$5^5$でも$2^5$でも割り切れる。$5^5$と$2^5$は互いに素なので
$5^5x-625^2$は$5^5・2^5$の倍数である。このことから、②の整数解のうち、
xが3桁の正の整数で最小になるのは
$x=\boxed{\ \ サシス\ \ }, y=\boxed{\ \ セソタチツ\ \ }$
であることが分かる。

(4)$11^4$を$2^4$で割った時の余りは1に等しい。不定方程式
$11^5x-2^5y=1$
の整数解のうち、xが正の整数で最小になるのは
$x=\boxed{\ \ テト\ \ }, y=\boxed{\ \ ナニヌネノ\ \ }$ である。

2022共通テスト数学過去問
この動画を見る 

エレガントな解法もとむ

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
次の性質を満たす最小の自然数Nを求めよ.
「600以下の自然数からどのN個を選んでも,その中に互いに素な2つの自然数の組が存在する。

この動画を見る 

整数問題

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$m,n$自然数とする.これを解け.
$n^2+785=3^m$
この動画を見る 

【高校数学】 数A-70 最大公約数・最小公倍数③

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①$a$は自然数とする.
$a+5$は4の倍数であり,$a+3$は6の倍数であるとき,
$a+9$は12の倍数であることを証明しよう.

②和が72,最大公約数が12である
2つの自然数$a,b(a\lt b)$の組をすべて求めよう.
この動画を見る 

整数問題 合同式 二項展開

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\displaystyle \frac{n^5}{15}+\displaystyle \frac{n^4}{6}+\displaystyle \frac{n^3}{3}+\displaystyle \frac{n^2}{3}+\displaystyle \frac{n}{10}$は$n$が自然数なら自然数であることを示せ
この動画を見る 
PAGE TOP