【ゼロからわかる】整式の割り算②(高校数学Ⅱ) - 質問解決D.B.(データベース)

【ゼロからわかる】整式の割り算②(高校数学Ⅱ)

問題文全文(内容文):
次の問いに答えよ。
(1)
$x^2-6x+3$で割ると、商が$2x-3,$余りが$3x$である整数$A$を求めよ。

(2)
$x^3+3x^2+2x+1$を$B$で割ると、商が$x+1,$余りが$x+2$になる。
整数$B$を求めよ。
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の問いに答えよ。
(1)
$x^2-6x+3$で割ると、商が$2x-3,$余りが$3x$である整数$A$を求めよ。

(2)
$x^3+3x^2+2x+1$を$B$で割ると、商が$x+1,$余りが$x+2$になる。
整数$B$を求めよ。
投稿日:2022.03.15

<関連動画>

福田の数学〜京都大学2022年理系第5問〜方程式の解と不等式の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#恒等式・等式・不等式の証明#解と判別式・解と係数の関係#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
曲線$C:y=\cos^3x$ $(0 \leqq x \leqq \frac{\pi}{2})$,x軸およびy軸で囲まれる図形の面s系をS
とする。$0 \lt t \lt \frac{\pi}{2}$とし、C上の点Q$(t,\cos^3t)$と原点O,およびP$(t,o),R(0,\cos^3t)$
を頂点にもつ長方形OPQRの面積をf(t)とする。このとき、次の問いに答えよ。
(1)Sを求めよ。
(2)$f(t)$は最大値をただ一つのtでとることを示せ。そのときのtを$\alpha$とすると、
$f(\alpha)=\frac{\cos^4\alpha}{3\sin\alpha}$ であることを示せ。
(3)$\frac{f(\alpha)}{S} \lt \frac{9}{16}$ を示せ。

2022京都大学理系過去問
この動画を見る 

【数学】二項定理の解説~形だけムズカシイけど、意味は単純!~全国模試1位の勉強法【篠原好】

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 篠原好【京大模試全国一位の勉強法】
問題文全文(内容文):
形だけムズカシイけど、意味は単純!
「数学の二項定理」について解説しています。
この動画を見る 

【高校数学】  数Ⅱ-8  分数式の計算①

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎約分して既約分数にしよう。

①$\displaystyle \frac{8ax^2y^2}{48a^2xy^2}$

②$\displaystyle \frac{x^2-3x+2}{x^2-4x+3}$

③$\displaystyle \frac{4x^3+8xy^2}{12x^2}$

④$\displaystyle \frac{x^2-1}{x^3-1}$

◎計算しよう。

⑤$\displaystyle \frac{x}{x-1} \times \displaystyle \frac{x^2-1}{3x}$

⑥$\displaystyle \frac{x^2-x-6}{x^2+x} \times \displaystyle \frac{x^2-1}{x^2-5x+6}$
この動画を見る 

福田のおもしろ数学496〜少なくとも1つは−1より大きくないことの証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

実数$a,b,c,d$が次の式を満たしている。

$a+b+c+d=-2$

$ab+ac+ad+bc+bd+cd=0$

このとき、$a,b,c,d$の少なくとも$1$つは

$-1$より大きくないことを証明して下さい。
    
この動画を見る 

【高校数学】 数Ⅱ-21 不等式の証明③

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎$a \gt 0 , b \gt 0 $のとき、次の不等式を証明しよう。また、等号が成り立つ場合を調べよう。

①$3a+\displaystyle \frac{5}{a} \geqq 2\sqrt{ 15 }$

②$(a+2b)(\displaystyle \frac{2}{a}+\displaystyle \frac{1}{b}) \geqq 8$
この動画を見る 
PAGE TOP