福田の数学〜慶應義塾大学2025経済学部第1問(2)〜2変数の不等式と領域 - 質問解決D.B.(データベース)

福田の数学〜慶應義塾大学2025経済学部第1問(2)〜2変数の不等式と領域

問題文全文(内容文):

$\boxed{1}$

(2)不等式

$\vert m+n-6 \vert + \vert m-n-2 \vert \leqq 6 \cdots ①$

を満たす整数$m,n$を考える。

$(m+n-6)(m-n-2)\geqq 0$のとき、$m$と$n$が

不等式①を満たすための必要十分条件は

$\boxed{セ} \leqq m \leqq \boxed{ソ}$

である。

同様に、$(m+n-6)(m-n-2)\leqq 0$のとき、

$m$と$n$が①を満たすための必要十分条件は

$\boxed{タチ}\leqq n \leqq \boxed{ツ}$

である。よって、$m$と$n$が①を満たすとき、

$(m-n)(m+n-6)$の最大値は、

$(m-n)(m+n-6)=(m-\boxed{テ})^2-(n-\boxed{ト})^2$

より$\boxed{ナニ}$である。

$2025$年慶應義塾大学経済学部過去問題
単元: #数Ⅱ#図形と方程式#軌跡と領域#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{1}$

(2)不等式

$\vert m+n-6 \vert + \vert m-n-2 \vert \leqq 6 \cdots ①$

を満たす整数$m,n$を考える。

$(m+n-6)(m-n-2)\geqq 0$のとき、$m$と$n$が

不等式①を満たすための必要十分条件は

$\boxed{セ} \leqq m \leqq \boxed{ソ}$

である。

同様に、$(m+n-6)(m-n-2)\leqq 0$のとき、

$m$と$n$が①を満たすための必要十分条件は

$\boxed{タチ}\leqq n \leqq \boxed{ツ}$

である。よって、$m$と$n$が①を満たすとき、

$(m-n)(m+n-6)$の最大値は、

$(m-n)(m+n-6)=(m-\boxed{テ})^2-(n-\boxed{ト})^2$

より$\boxed{ナニ}$である。

$2025$年慶應義塾大学経済学部過去問題
投稿日:2025.05.20

<関連動画>

【高校数学】 数Ⅱ-11 分数式の計算④

アイキャッチ画像
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: とある男が授業をしてみた
問題文全文(内容文):
◎計算しよう。

①$\displaystyle \frac{1}{(a-b)(b-c)}+\displaystyle \frac{2}{(b-c)(c-a)}+\displaystyle \frac{3}{(c-a)(a-b)}$

②$\displaystyle \frac{1}{(x-y)(x-z)}+\displaystyle \frac{1}{(y-z)(y-x)}-\displaystyle \frac{1}{(z-x)(z-y)}$
この動画を見る 

【数学Ⅱ】図形と方程式 領域の難問を打破する!!

アイキャッチ画像
単元: #数Ⅱ#図形と方程式#数学(高校生)
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学Ⅱ】図形と方程式 領域の難問解説動画です
-----------------
直線$2kx+y+k^=0…①$における$k$がすべての実数を満たしながら動くとき、直線①が通る領域を図示せよ。
この動画を見る 

福田のわかった数学〜高校2年生068〜三角関数(7)三角方程式とグラフ

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#三角関数#剰余の定理・因数定理・組み立て除法と高次方程式#三角関数とグラフ#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 三角関数(7) 三角方程式
$0 \leqq x \leqq 2\pi, 0 \leqq y \leqq 2\pi$において
$\cos y=\sin2x$ のグラフを描け。
この動画を見る 

福田の数学〜慶應義塾大学2021年総合政策学部第4問〜円と放物線が接するときの囲まれた面積

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#学校別大学入試過去問解説(数学)#面積、体積#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{4}}$a
aを正の実数、bを1より大きい実数としたとき、放物線$y=-ax^2+b$が、
下図(※動画参照)のように原点を中心とした半径1の円$x^2+y^2=1$と2箇所で
接している。(すなわち共有点において共通の接線を持つ)

(1)一般に、$b=\frac{\boxed{\ \ アイ\ \ }a^2+\boxed{\ \ ウエ\ \ }a+\boxed{\ \ オカ\ \ }}{\boxed{\ \ キク\ \ }a+\boxed{\ \ ケコ\ \ }}$である。

(2)特に、$a=\frac{\sqrt2}{2}$とすると、放物線と円の接点は
$(±\frac{\sqrt{\boxed{\ \ サシ\ \ }}}{\boxed{\ \ スセ\ \ }},\ \frac{\sqrt{\boxed{\ \ ソタ\ \ }}}{\boxed{\ \ チツ\ \ }})$
であり、円と放物線に囲まれた上図の斜線部の面積は
$\frac{\boxed{\ \ テト\ \ }+\boxed{\ \ ナニ\ \ }\pi}{\boxed{\ \ ヌネ\ \ }}$となる。

2021慶應義塾大学総合政策学部過去問
この動画を見る 

愛があれば解決する。愛はなくても問題ない

アイキャッチ画像
単元: #数Ⅱ#式と証明#複素数と方程式#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#複素数
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\begin{eqnarray}
\left\{
\begin{array}{l}
2x+2\sqrt{3}y=\dfrac{x}{x^2+y^2} \\
2\sqrt{3}x-2y=\dfrac{y}{x^2+y^2}
\end{array}
\right.
\end{eqnarray}$
連立方程式を解け.
この動画を見る 
PAGE TOP