問題文全文(内容文):
$0\leqq\theta\lt2\pi$のとき、$\sin^2\theta-\sin\theta=a$ この方程式の解の個数を実数aの値で場合分けして求めよ
$0\leqq\theta\lt2\pi$のとき、$\sin^2\theta-\sin\theta=a$ この方程式の解の個数を実数aの値で場合分けして求めよ
チャプター:
0≦θ<2πのとき、sin²θ-sinθ=a この方程式の解の個数を実数aの値で場合分けして求めよ
単元:
#数Ⅱ#三角関数#三角関数とグラフ#数学(高校生)
教材:
#チャート式#黄チャートⅡ・B#中高教材
指導講師:
理数個別チャンネル
問題文全文(内容文):
$0\leqq\theta\lt2\pi$のとき、$\sin^2\theta-\sin\theta=a$ この方程式の解の個数を実数aの値で場合分けして求めよ
$0\leqq\theta\lt2\pi$のとき、$\sin^2\theta-\sin\theta=a$ この方程式の解の個数を実数aの値で場合分けして求めよ
投稿日:2021.06.18