福田の数学〜青山学院大学2022年理工学部第5問〜切り取られる弦の中点の軌跡 - 質問解決D.B.(データベース)

福田の数学〜青山学院大学2022年理工学部第5問〜切り取られる弦の中点の軌跡

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{5}}\ xy平面上に、円C:(x-5)^2+y^2=5と直線l:y=mxがある。\hspace{50pt}\\
(1)Cとlが共有点を持つようなmの値の範囲を求めよ。\hspace{98pt}\\
mの値が(1)で求めた範囲にあるとき、Cとlの2つの共有点をP,Qとし、\hspace{31pt}\\
線分PQの中点をMとする。ただし、lがCに接するときはP=Q=Mとする。\\
(2)点Mの座標をmを用いて表せ。\hspace{170pt}\\
(3)mが(1)で求めた範囲を動くときの点Mの軌跡を求め、図示せよ。\hspace{44pt}\\
(4)原点からCに引いた2本の接線と(3)で求めた点Mの軌跡で囲まれた図形を\hspace{16pt}\\
Dとする。図形Dをx軸の周りに1回転してできる回転体の体積Vを求めよ。\hspace{21pt}
\end{eqnarray}

2022青山学院大学理工学部過去問
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#軌跡と領域#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#青山学院大学
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{5}}\ xy平面上に、円C:(x-5)^2+y^2=5と直線l:y=mxがある。\hspace{50pt}\\
(1)Cとlが共有点を持つようなmの値の範囲を求めよ。\hspace{98pt}\\
mの値が(1)で求めた範囲にあるとき、Cとlの2つの共有点をP,Qとし、\hspace{31pt}\\
線分PQの中点をMとする。ただし、lがCに接するときはP=Q=Mとする。\\
(2)点Mの座標をmを用いて表せ。\hspace{170pt}\\
(3)mが(1)で求めた範囲を動くときの点Mの軌跡を求め、図示せよ。\hspace{44pt}\\
(4)原点からCに引いた2本の接線と(3)で求めた点Mの軌跡で囲まれた図形を\hspace{16pt}\\
Dとする。図形Dをx軸の周りに1回転してできる回転体の体積Vを求めよ。\hspace{21pt}
\end{eqnarray}

2022青山学院大学理工学部過去問
投稿日:2022.09.30

<関連動画>

これ読める?

アイキャッチ画像
単元: #数Ⅱ#指数関数と対数関数#指数関数#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
3の(3の3乗)の計算を解説していきます.
この動画を見る 

横浜市立(医)3項間漸化式 良問再投稿

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#解と判別式・解と係数の関係#数列#漸化式#数学(高校生)#数B#横浜市立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=a_2=1$ 一般項を求めよ
$a_{n+2}-5a_{n+1}+6a_n-6n=0$

出典:2016年横浜市立大学 医学部 過去問
この動画を見る 

福田の数学〜中央大学2021年経済学部第3問〜円と円の位置関係と共通接線

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#円と方程式#学校別大学入試過去問解説(数学)#中央大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{3}} 円C_1:x^2+y^2-r=0と円C_2:x^2-10x+y^2+21=0 について、\\
以下の問いに答えよ。ただし、rは正の定数とする。\\
\\
(1)円C_1と円C_2が接するとき、rの値を求めよ。\\
(2)r=1とする。円C_1の接線lが円C_2にも接しているとき、\\
lの方程式を求めよ。解答はy=ax+bの形で表せ。\\

\end{eqnarray}

2021中央大学経済学部過去問
この動画を見る 

対数の良問!値を上手く自分で評価できるかがポイント【大阪大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#学校別大学入試過去問解説(数学)#大阪大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
自然数m,nと$0<a\dfrac{2}{3}$が成り立つことを示せ。

大阪大過去問
この動画を見る 

【高校数学】3倍角の公式~簡単に導出できます~ 4-13.5【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#三角関数#三角関数とグラフ#加法定理とその応用#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
3倍角の公式についての説明動画です
この動画を見る 
PAGE TOP