福田の数学〜上智大学2022年理工学部第1問(2)〜多項定理 - 質問解決D.B.(データベース)

福田の数学〜上智大学2022年理工学部第1問(2)〜多項定理

問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (2)(1+x+x^2)^{10}\ のx^{16}\ の係数は\boxed{\ \ ア\ \ }\ である。
\end{eqnarray}

2022上智大学理工部過去問
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#上智大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{1}}\ (2)(1+x+x^2)^{10}\ のx^{16}\ の係数は\boxed{\ \ ア\ \ }\ である。
\end{eqnarray}

2022上智大学理工部過去問
投稿日:2022.10.16

<関連動画>

福田の数学〜早稲田大学2021年商学部第1問(3)〜相加相乗平均

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{1}} (3)正の実数x,y,zが\\
\frac{1}{x}+\frac{2}{y}+\frac{3}{z}=1\\
を満たすとき、(x-1)(y-2)(z-3)の最小値は\boxed{\ \ ウ\ \ }である。
\end{eqnarray}

2021早稲田大学商学部過去問
この動画を見る 

福田の数学〜慶應義塾大学2022年薬学部第2問〜二項定理と数列の部分和

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\Large\boxed{2}}\ 数列\left\{a_n\right\}の初項から第n項までの和S_n、数列\left\{b_n\right\}の初項から第n項までの和T_n\\
はそれぞれ\\
S_n=\sum_{k=1}^n {}_n \mathrm{ C }_k, T_n=\sum_{k=1}^n k・{}_n \mathrm{ C }_k\\
で表される。\\
(1)x \gt y \geqq 1を満たす自然数x,yについて、\\
{}_x \mathrm{ C }_y={}_{x-1} \mathrm{ C }_y+{}_i \mathrm{ C }_j, y・{}_x \mathrm{ C }_y=x・{}_p \mathrm{ C }_q,\\
が成り立つ。i,j,p,qをそれぞれx,yを用いて表すと、i=\boxed{\ \ ス\ \ },j=\boxed{\ \ セ\ \ },\\
p=\boxed{\ \ ソ\ \ },q=\boxed{\ \ タ\ \ }である。\\
(2)a_2,b_4の値をそれぞれ求めるとa_2=\boxed{\ \ チ\ \ },b_4=\boxed{\ \ ツ\ \ }である。\\
(3)S_n,a_nをそれぞれnの式で表すと、S_n=\boxed{\ \ テ\ \ },a_n=\boxed{\ \ ト\ \ }である。\\
(4)b_nをnの式で表すと、b_n=\boxed{\ \ ナ\ \ }である。
\end{eqnarray}

2022慶應義塾大学薬学部過去問
この動画を見る 

16次式が正である証明

アイキャッチ画像
単元: #数Ⅱ#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
xが実数なら
$x^{16}-x+1>0$であることを示せ
この動画を見る 

どっちがでかい?

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?

$(2+3)(2^2+3^2)(2^4+3^4)(2^8+3^8)(2^{16}+3^{16})(2^{32}+3^{32})$ VS $3^{64}$
この動画を見る 

【高校数学】恒等式の問題演習~係数比較法と数値代入法を分かりやすく~ 1-7.5【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
等式$x^3+5x^2+4x-4=(x+1)^3+p(x+1)^2+q(x+1)+r$が$x$についての恒等式となるように、定数$p,q,r$の値を求めよ
この動画を見る 
PAGE TOP