整式の剰余 - 質問解決D.B.(データベース)

整式の剰余

問題文全文(内容文):
$x^{2n}+x^n+1$が$x^4+x^2+1$で割り切れる.
自然数$n$はどのような数か.
単元: #数Ⅱ#式と証明#整式の除法・分数式・二項定理#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{2n}+x^n+1$が$x^4+x^2+1$で割り切れる.
自然数$n$はどのような数か.
投稿日:2020.07.27

<関連動画>

どっちがでかい?

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
どちらが大きいか?

$(2+3)(2^2+3^2)(2^4+3^4)(2^8+3^8)(2^{16}+3^{16})(2^{32}+3^{32})$ VS $3^{64}$
この動画を見る 

大学入試問題#103 東海大学医学部(2017) 二項定理

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#数学(高校生)#東海大学
指導講師: ますただ
問題文全文(内容文):
次の和を求めよ。
(1)
${}_{ n }C_0+{}_{ n }C_1+・・・+{}_{ n }C_n$

(2)
$\displaystyle \frac{1}{1!(2n)!}+\displaystyle \frac{1}{2(2n-1)!}+・・・+\displaystyle \frac{1}{n!(n+1)!}$

出典:2017年東海大学医学部 入試問題
この動画を見る 

この式は「あれ」を使うしかないですよね【京都大学】【数学 入試問題】

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#整式の除法・分数式・二項定理#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
多項式$(x^{100}+1)^{100}+(x^{2}+1)^{100}+1$は多項式$x^2+x+1$で割り切れるか。

京都大過去問
この動画を見る 

三平方の定理の証明

アイキャッチ画像
単元: #数学(中学生)#中3数学#数Ⅱ#式と証明#三平方の定理#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
三平方の定理の証明
$a^2+b^2=c^2$
この動画を見る 

2打数1安打VS 3打数2安打  証明しろといわれたら数II

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
0<a<bのとき
$\frac{a}{b}$と$\frac{a+1}{b+1}$
どっちが大きい?
この動画を見る 
PAGE TOP