福田の一夜漬け数学〜数列・漸化式(6)その他色々〜高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜数列・漸化式(6)その他色々〜高校2年生

問題文全文(内容文):
次の漸化式を解け。(すべて$a_1=1$とする)
①$a_{n+1}=\displaystyle \frac{a_n}{4a_n-1}$

②$a_{n+1}=2\displaystyle \sqrt{a_n}$

③$a_{n+1}=2(n+1)a_n$

④$a_{n+1}=\displaystyle \frac{4a_n+8}{a_n+6}$
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の漸化式を解け。(すべて$a_1=1$とする)
①$a_{n+1}=\displaystyle \frac{a_n}{4a_n-1}$

②$a_{n+1}=2\displaystyle \sqrt{a_n}$

③$a_{n+1}=2(n+1)a_n$

④$a_{n+1}=\displaystyle \frac{4a_n+8}{a_n+6}$
投稿日:2018.05.10

<関連動画>

福田のおもしろ数学420〜間に左右の数の和を次々と書き足していくときの総和

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

黒板の両端に$1$が書かれている。

$1$番の生徒がその間に

左右の数の和である$2$を書く。

$2$番の生徒が$2$カ所の間に

左右の数の和である$3$を書く。

この操作を繰り返したとき、

$n$番の生徒が書き終えたとき、数字の合計はいくらか?

図は動画内参照
   
この動画を見る 

福田の数学〜東京大学2025理系第5問〜バブルソートが題材となった数が整列する条件を漸化式にする

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{5}$

$n$を$2$以上の整数とする。

$1$から$n$までの数字が書かれた札が各$1$枚ずつ合計$n$枚あり、

横一列におかれている。

$1$以上$(n-1)$以下の整数$i$に対して、

次の操作$(T_i)$を考える。

$(T_i)$左から$i$番目の札の数字が、

左から$(i+1)$番目の札の数字よりも大きければ、

これら$2$枚の札の位置を入れ替える。

そうでなければ、札の位置を変えない。

最初の状態において札の数字は左から

$A_1,A_2,\cdots A_n$であったとする。

この状態から$(n-1)$回の操作$(T_1),(T_2),\cdots (T_{n-1})$を

順に行った後、続けて$(n-1)$回の操作

$(T_{n-1}),\cdots ,(T_2),(T_1)$を順に行ったところ、

札の数字は左から$1,2,\cdots ,n$と小さい順に並んだ。

以下の問いに答えよ。

(1)$A_1$と$A_2$の少なくとも一方は$2$以下であることを示せ。

(2)最初の状態としてありうる札の数字の並び方

$A_1,A_2,\cdots 、A_n$no総数を$c_n$とする。

$n$が$4$以上の整数であるとき、

$c_n$を$c_{n-1}$と$c_{n-2}$を用いて表せ。

$2025$年東京大学理系過去問題
この動画を見る 

18岡山県教員採用試験(数学:5番 数列)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{5}$

等差数列${a_n}$は
$a_9=0,a_{12}=25$を満たしている.
$2^{a_1}\times 2^{a_2}\times ・・・ \times 2^{a_n}=4096^{10}$となる
$n$を求めよ.
この動画を見る 

大学入試問題#233 岡山県立大学(2012) #数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B#岡山県立大学
指導講師: ますただ
問題文全文(内容文):
$a_1=1$
$a_{n+1}=\displaystyle \frac{4}{n}S_n$
一般項$a_n$を求めよ。

出典:2012年岡山県立大学 入試問題
この動画を見る 

cos1°は有理数か【数学 入試問題】【チェビシェフ多項式】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#集合と命題(集合・命題と条件・背理法)#三角関数#加法定理とその応用#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#埼玉大学#数B
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
(1)$n$を自然数とする。
$cos(n+2)\theta+cos n\theta=2cos(n+1)\theta cos\theta$を示せ。

(2)自然数$n$に対し、$cosn\theta=T_n(cos\theta)$を満たす整数係数の$n$次の整式$T_n(x)$が存在することを示せ。

(3)$cos1°$が無理数であることを証明せよ。

数学入試問題過去問
この動画を見る 
PAGE TOP