福田のわかった数学〜高校3年生理系092〜グラフを描こう(14)三角関数、凹凸、漸近線 - 質問解決D.B.(データベース)

福田のわかった数学〜高校3年生理系092〜グラフを描こう(14)三角関数、凹凸、漸近線

問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう(14)\hspace{100pt}\\
y=\frac{1}{2}\sin2x-2\sin x+x (0 \leqq x \leqq 2\pi)のグラフを描け。凹凸、漸近線も調べよ。
\end{eqnarray}
単元: #数Ⅱ#三角関数#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} グラフを描こう(14)\hspace{100pt}\\
y=\frac{1}{2}\sin2x-2\sin x+x (0 \leqq x \leqq 2\pi)のグラフを描け。凹凸、漸近線も調べよ。
\end{eqnarray}
投稿日:2021.11.07

<関連動画>

福田のわかった数学〜高校3年生理系104〜絶対不等式(2)

アイキャッチ画像
単元: #数Ⅰ#数と式#一次不等式(不等式・絶対値のある方程式・不等式)#微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 絶対不等式(2)\\
\sqrt x+\sqrt y \leqq k\sqrt{2x+y}\\
が任意の正の実数x,yに対して成り立つような実数k\\
の値の範囲を求めよ。
\end{eqnarray}
この動画を見る 

大学入試問題#432「このタイプの証明はよくある」 横浜国立大学2014 #微分の応用 #不等式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$0 \lt x \lt 1$のとき
$(\displaystyle \frac{x+1}{2})^{x+1} \lt x^x$を示せ

出典:2014年横浜国立大学 入試問題
この動画を見る 

福田のわかった数学〜高校3年生理系061〜微分(6)高次導関数

アイキャッチ画像
単元: #微分とその応用#色々な関数の導関数#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
\begin{eqnarray}
数学\textrm{III} 微分(6) 高次導関数\\
\\
f(x)=\sin xの第n次導関数は\\
f^{(n)}(x)=\sin(x+\frac{n\pi}{2})であることを示せ。
\end{eqnarray}
この動画を見る 

京都大 3次関数 整数問題

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
$f(x)=x^3+2x^2+2$
$|f(n)$と$|f(n+1)|$がともに素数となるような整数$n$を求めよ

出典:2019年京都大学 過去問
この動画を見る 

福田の数学〜早稲田大学2023年理工学部第3問〜逆関数とで囲まれる面積

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#微分とその応用#積分とその応用#関数(分数関数・無理関数・逆関数と合成関数)#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#定積分#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 実数xに対して関数f(x)をf(x)=$e^{x-2}$で定め、正の実数xに対して関数g(x)をg(x)=$\log x$+2で定める。またy=f(x), y=g(x)のグラフをそれぞれ$C_1$,$C_2$とする。以下の問いに答えよ。
(1)f(x)とg(x)がそれぞれ互いの逆関数であることを示せ。
(2)直線y=xと$C_1$が2点で交わることを示せ。ただし、必要なら2<e<3を証明しないで用いてよい。
(3)直線y=xと$C_1$との2つの交点のx座標を$\alpha$, $\beta$とする。ただし$\alpha$<$\beta$とする。
直線y=xと$C_1$,$C_2$をすべて同じxy平面上に図示せよ。
(4)$C_1$と$C_2$で囲まれる図形の面積を(3)の$\alpha$と$\beta$の多項式で表せ。

2023早稲田大学理工学部過去問
この動画を見る 
PAGE TOP