N進法 - 質問解決D.B.(データベース)

N進法

問題文全文(内容文):
なぜ?がわかるn進法
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
なぜ?がわかるn進法
投稿日:2022.07.02

<関連動画>

福田のおもしろ数学047〜これができたら天才〜ガウス記号のついた数の和

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\left[\dfrac{13×1}{2024}\right]+\left[\dfrac{13×2}{2024}\right]+\left[\dfrac{13×3}{2024}\right]+・・・+\left[\dfrac{13×2023}{2024}\right]$を計算してください。
ただし、$[x]$は$x$を超えない最大の整数を表します。
この動画を見る 

福田の数学〜慶應義塾大学2023年薬学部第1問(2)〜折れ線の最小と内接円の半径

アイキャッチ画像
単元: #数A#数Ⅱ#大学入試過去問(数学)#図形の性質#周角と円に内接する四角形・円と接線・接弦定理#図形と方程式#三角関数#点と直線#加法定理とその応用#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (2)aは正の定数とする。原点をOとするxy平面上に直線l:y=$\frac{2}{3}$xと2点A(0,a), B(17,20)がある。直線l上にとった動点Pと2点A,Bそれぞれを線分で結び、2つの線分の長さの和AP+BPが最小となったとき、$\angle APO$=45°であった。AP+BPが最小であるとき、直線BPを表す方程式はy=$\boxed{\ \ ウ\ \ }$であり、三角形ABPの内接円の半径は$\boxed{\ \ エ\ \ }$である。

2023慶應義塾大学薬学部過去問
この動画を見る 

チェバの定理使わずに解ける? 香川誠陵 2022入試問題解説23問目

アイキャッチ画像
単元: #数学(中学生)#数A#図形の性質#内心・外心・重心とチェバ・メネラウス#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
チェバの定理は使わない
AF:FCを求めよ
*図は動画内参照

2022香川誠陵高等学校
この動画を見る 

2022年の整数問題!この問題好きです❤️ 早稲田大学高等学院2022年入試問題解説49問目

アイキャッチ画像
単元: #数学(中学生)#数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#高校入試過去問(数学)#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$2022=x \sqrt y (x^y+y^y)$
を満たす自然数x,yは?

2022早稲田大学高等学院
この動画を見る 

3乗根の方程式

アイキャッチ画像
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
これを解け.
$\sqrt[3]{(x+1)^2}+2\sqrt[3]{(x-1)^2}=3\sqrt[3]{x^2-1}$
この動画を見る 
PAGE TOP