東北大 3次方程式 整数解 - 質問解決D.B.(データベース)

東北大 3次方程式 整数解

問題文全文(内容文):
$x^3-(p-3)x^2-3x+p-1=0$の3つの解がすべて整数となるような実数$p$を求めよ

出典:2000年東北大学 過去問
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#解と判別式・解と係数の関係#学校別大学入試過去問解説(数学)#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^3-(p-3)x^2-3x+p-1=0$の3つの解がすべて整数となるような実数$p$を求めよ

出典:2000年東北大学 過去問
投稿日:2019.06.19

<関連動画>

福田の数学〜明治大学2022年全学部統一入試理系第2問〜方程式の実数解の個数

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#明治大学#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
$a$は$0<a<1$を満たす定数とする。 次の方程式の異なる実数解の個数を求めよう。

$x^2=a^-x$

$f(x) = x^2a^x$ とおけば、
$f(x)$ は $x = [ア]$で極小値$[イ]$をとり、$x= [ウ]$で極大値$[エ]$をとる。
また、$lim(x→-∞) f(x)= [オ]$であり、$ lim(x→∞) f(x)=0$ である。

2022明治大学全統理系過去問

この動画を見る 

慶應義塾大 整式の剰余 杉山さん

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#剰余の定理・因数定理・組み立て除法と高次方程式#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$n$は3で割って1余る自然数
$(x-1)(x^{3n}-1)$が$(x^3-1)(x^n-1)$で割り切れることを示せ

出典:2018年慶應義塾 過去問
この動画を見る 

大学入試問題#228 愛知教育大学(2012) 3乗根の計算

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#複素数と方程式#複素数#学校別大学入試過去問解説(数学)#数学(高校生)#愛知教育大学
指導講師: ますただ
問題文全文(内容文):
$\alpha=\sqrt[ 3 ]{ 5\sqrt{ 2 }+7 }-\sqrt[ 3 ]{ 5\sqrt{ 2 }-7 }$

(1)$\alpha^3$を$\alpha$で表せ
(2)$\alpha$は整数であることを示せ

出典:2012年愛知教育大学 入試問題
この動画を見る 

大学入試問題#396「基本問題」 慶應義塾大学(2009) #複素数

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#複素数#数学(高校生)
指導講師: ますただ
問題文全文(内容文):
$a,b$:実数
$(a+bi)^3=4+\mathit{i}$のとき、
$\displaystyle \frac{(a-b\mathit{i})^3}{2+3\mathit{i}}$の値を求めよ

出典:2009年慶應義塾大学 入試問題
この動画を見る 

福田の数学〜京都大学2022年理系第5問〜方程式の解と不等式の証明

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#恒等式・等式・不等式の証明#解と判別式・解と係数の関係#微分とその応用#積分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
曲線$C:y=\cos^3x$ $(0 \leqq x \leqq \frac{\pi}{2})$,x軸およびy軸で囲まれる図形の面s系をS
とする。$0 \lt t \lt \frac{\pi}{2}$とし、C上の点Q$(t,\cos^3t)$と原点O,およびP$(t,o),R(0,\cos^3t)$
を頂点にもつ長方形OPQRの面積をf(t)とする。このとき、次の問いに答えよ。
(1)Sを求めよ。
(2)$f(t)$は最大値をただ一つのtでとることを示せ。そのときのtを$\alpha$とすると、
$f(\alpha)=\frac{\cos^4\alpha}{3\sin\alpha}$ であることを示せ。
(3)$\frac{f(\alpha)}{S} \lt \frac{9}{16}$ を示せ。

2022京都大学理系過去問
この動画を見る 
PAGE TOP