問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ 右の図(※動画参照)のような平行六面体OABC-DEFGにおいて、\\
すべての辺の長さは1であり、\overrightarrow{ OA },\ \overrightarrow{ OC },\ \overrightarrow{ OD }のどの\\
2つのなす角も\frac{\pi}{3}であるとする。\\
(1)\overrightarrow{ OF }を\overrightarrow{ OA },\ \overrightarrow{ OC },\ \overrightarrow{ OD }を用いて表すと、\overrightarrow{ OF }= \boxed{\ \ き\ \ }である。\\
(2)|\overrightarrow{ OF }|,\ \cos \angle AOFを求めると|\overrightarrow{ OF }|= \boxed{\ \ く\ \ },\ \cos \angle AOF=\boxed{\ \ け\ \ }である。\\
(3)三角形ACDを底面とする三角錐OACDを、直線OFの周りに1回転して\\
できる円錐の体積は\boxed{\ \ こ\ \ }である。\\
(4)対角線OF上に点Pをとり、|\overrightarrow{ OP }|=tとおく。点Pを通り、\overrightarrow{ OF }に垂直な平面\\
をHとする。平行六面体OABC-DEFGを平面Hで切った時の断面が六角形\\
となるようなtの範囲は\boxed{\ \ さ\ \ }である。このとき、平面Hと辺AEの交点をQ\\
として、|\overrightarrow{ AQ }|をtの式で表すと|\overrightarrow{ AQ }|=\boxed{\ \ し\ \ }である。また、|\overrightarrow{ PQ }|^2をtの式で表すと\\
|\overrightarrow{ PQ }|^2=|\overrightarrow{ OQ }|^2-|\overrightarrow{ OP }|^2=\boxed{\ \ す\ \ }\\
である。\\
(5)平行六面体OABC-DEFGを、直線OFの周りに1回転してできる回転体\\
の体積は\boxed{\ \ こ\ \ }である。
\end{eqnarray}
2022明治大学理工学部過去問
\begin{eqnarray}
{\large\boxed{3}}\ 右の図(※動画参照)のような平行六面体OABC-DEFGにおいて、\\
すべての辺の長さは1であり、\overrightarrow{ OA },\ \overrightarrow{ OC },\ \overrightarrow{ OD }のどの\\
2つのなす角も\frac{\pi}{3}であるとする。\\
(1)\overrightarrow{ OF }を\overrightarrow{ OA },\ \overrightarrow{ OC },\ \overrightarrow{ OD }を用いて表すと、\overrightarrow{ OF }= \boxed{\ \ き\ \ }である。\\
(2)|\overrightarrow{ OF }|,\ \cos \angle AOFを求めると|\overrightarrow{ OF }|= \boxed{\ \ く\ \ },\ \cos \angle AOF=\boxed{\ \ け\ \ }である。\\
(3)三角形ACDを底面とする三角錐OACDを、直線OFの周りに1回転して\\
できる円錐の体積は\boxed{\ \ こ\ \ }である。\\
(4)対角線OF上に点Pをとり、|\overrightarrow{ OP }|=tとおく。点Pを通り、\overrightarrow{ OF }に垂直な平面\\
をHとする。平行六面体OABC-DEFGを平面Hで切った時の断面が六角形\\
となるようなtの範囲は\boxed{\ \ さ\ \ }である。このとき、平面Hと辺AEの交点をQ\\
として、|\overrightarrow{ AQ }|をtの式で表すと|\overrightarrow{ AQ }|=\boxed{\ \ し\ \ }である。また、|\overrightarrow{ PQ }|^2をtの式で表すと\\
|\overrightarrow{ PQ }|^2=|\overrightarrow{ OQ }|^2-|\overrightarrow{ OP }|^2=\boxed{\ \ す\ \ }\\
である。\\
(5)平行六面体OABC-DEFGを、直線OFの周りに1回転してできる回転体\\
の体積は\boxed{\ \ こ\ \ }である。
\end{eqnarray}
2022明治大学理工学部過去問
単元:
#数Ⅱ#大学入試過去問(数学)#平面上のベクトル#空間ベクトル#微分法と積分法#平面上のベクトルと内積#学校別大学入試過去問解説(数学)#不定積分・定積分#面積、体積#明治大学#数学(高校生)#数C
指導講師:
福田次郎
問題文全文(内容文):
\begin{eqnarray}
{\large\boxed{3}}\ 右の図(※動画参照)のような平行六面体OABC-DEFGにおいて、\\
すべての辺の長さは1であり、\overrightarrow{ OA },\ \overrightarrow{ OC },\ \overrightarrow{ OD }のどの\\
2つのなす角も\frac{\pi}{3}であるとする。\\
(1)\overrightarrow{ OF }を\overrightarrow{ OA },\ \overrightarrow{ OC },\ \overrightarrow{ OD }を用いて表すと、\overrightarrow{ OF }= \boxed{\ \ き\ \ }である。\\
(2)|\overrightarrow{ OF }|,\ \cos \angle AOFを求めると|\overrightarrow{ OF }|= \boxed{\ \ く\ \ },\ \cos \angle AOF=\boxed{\ \ け\ \ }である。\\
(3)三角形ACDを底面とする三角錐OACDを、直線OFの周りに1回転して\\
できる円錐の体積は\boxed{\ \ こ\ \ }である。\\
(4)対角線OF上に点Pをとり、|\overrightarrow{ OP }|=tとおく。点Pを通り、\overrightarrow{ OF }に垂直な平面\\
をHとする。平行六面体OABC-DEFGを平面Hで切った時の断面が六角形\\
となるようなtの範囲は\boxed{\ \ さ\ \ }である。このとき、平面Hと辺AEの交点をQ\\
として、|\overrightarrow{ AQ }|をtの式で表すと|\overrightarrow{ AQ }|=\boxed{\ \ し\ \ }である。また、|\overrightarrow{ PQ }|^2をtの式で表すと\\
|\overrightarrow{ PQ }|^2=|\overrightarrow{ OQ }|^2-|\overrightarrow{ OP }|^2=\boxed{\ \ す\ \ }\\
である。\\
(5)平行六面体OABC-DEFGを、直線OFの周りに1回転してできる回転体\\
の体積は\boxed{\ \ こ\ \ }である。
\end{eqnarray}
2022明治大学理工学部過去問
\begin{eqnarray}
{\large\boxed{3}}\ 右の図(※動画参照)のような平行六面体OABC-DEFGにおいて、\\
すべての辺の長さは1であり、\overrightarrow{ OA },\ \overrightarrow{ OC },\ \overrightarrow{ OD }のどの\\
2つのなす角も\frac{\pi}{3}であるとする。\\
(1)\overrightarrow{ OF }を\overrightarrow{ OA },\ \overrightarrow{ OC },\ \overrightarrow{ OD }を用いて表すと、\overrightarrow{ OF }= \boxed{\ \ き\ \ }である。\\
(2)|\overrightarrow{ OF }|,\ \cos \angle AOFを求めると|\overrightarrow{ OF }|= \boxed{\ \ く\ \ },\ \cos \angle AOF=\boxed{\ \ け\ \ }である。\\
(3)三角形ACDを底面とする三角錐OACDを、直線OFの周りに1回転して\\
できる円錐の体積は\boxed{\ \ こ\ \ }である。\\
(4)対角線OF上に点Pをとり、|\overrightarrow{ OP }|=tとおく。点Pを通り、\overrightarrow{ OF }に垂直な平面\\
をHとする。平行六面体OABC-DEFGを平面Hで切った時の断面が六角形\\
となるようなtの範囲は\boxed{\ \ さ\ \ }である。このとき、平面Hと辺AEの交点をQ\\
として、|\overrightarrow{ AQ }|をtの式で表すと|\overrightarrow{ AQ }|=\boxed{\ \ し\ \ }である。また、|\overrightarrow{ PQ }|^2をtの式で表すと\\
|\overrightarrow{ PQ }|^2=|\overrightarrow{ OQ }|^2-|\overrightarrow{ OP }|^2=\boxed{\ \ す\ \ }\\
である。\\
(5)平行六面体OABC-DEFGを、直線OFの周りに1回転してできる回転体\\
の体積は\boxed{\ \ こ\ \ }である。
\end{eqnarray}
2022明治大学理工学部過去問
投稿日:2022.09.09