整数問題 あの定理の証明 - 質問解決D.B.(データベース)

整数問題 あの定理の証明

問題文全文(内容文):
$2P^4-1237$が素数となる素数$P$をすべて求めよ.
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2P^4-1237$が素数となる素数$P$をすべて求めよ.
投稿日:2021.12.23

<関連動画>

ごめんなさい。訂正です。

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$123^{456}$を$78$で割った余りを求めよ.

この動画を見る 

福田のおもしろ数学320〜完全平方数となる条件

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
自然数 $n$ に対して $n \cdot 2^n +1$ が平方数となるような $n$ をすべて求めて下さい。
この動画を見る 

ルートと整数 大阪星光学院

アイキャッチ画像
単元: #数Ⅰ#数A#数と式#実数と平方根(循環小数・有理数・無理数・絶対値・平方根計算・2重根号)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 数学を数楽に
問題文全文(内容文):
$n^2-2n-1 < \sqrt{50} <n^2-2n+1 $
を満たす整数nをすべて求めよ。

大阪星光学院高等学校
この動画を見る 

福田のおもしろ数学144〜連続する6個の自然数を積の等しい2グループに分けられない証明

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
連続する6個の自然数を2つのグループに分けて、それぞれのグループに属する自然数の積を等しくすることはできない。
これを示せ。
この動画を見る 

整式の剰余

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$x^{2022}$を$(x-1)^3$で割った余りを求めよ.
この動画を見る 
PAGE TOP