階乗に関する方程式 - 質問解決D.B.(データベース)

階乗に関する方程式

問題文全文(内容文):
$\frac{1}{8!} + \frac{1}{9!} = \frac{x}{10!}$
x=?
単元: #数A#整数の性質#ユークリッド互除法と不定方程式・N進法#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 数学を数楽に
問題文全文(内容文):
$\frac{1}{8!} + \frac{1}{9!} = \frac{x}{10!}$
x=?
投稿日:2023.01.30

<関連動画>

福田の数学〜立教大学2023年経済学部第2問〜利息計算と漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#立教大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{2}$ 1年目の初めに新規に100万円を預金し、2年目以降の毎年初めに12万円を追加で預金する。ただし、毎年の終わりに、その時点での預金額の8%が利子として預金に加算される。自然数$n$に対して、$n$年目の終わりに利子が加算された後の預金額を$S_n$万円とする。このとき、以下の問いに答えよ。
ただし、$\log_{10}2$=0.3010, $\log_{10}3$=0.4771とする。
(1)$S_1$, $S_2$をそれぞれ求めよ。
(2)$S_{n+1}$を$S_n$を用いて表せ。
(3)$S_n$を$n$を用いて表せ。
(4)$\log_{10}1.08$を求めよ。
(5)$S_n$>513 を満たす最小の自然数$n$を求めよ。
この動画を見る 

【数B・Ⅲ】漸化式と極限:連立漸化式:数列{x[n]},{y[n]}をx[1]=y[1]=1, x[n+1]=(2/3)x[n]+(1/6)y[n], y[n+1]=(1/3)x[n]+(5/6)y…

アイキャッチ画像
単元: #数列#漸化式#関数と極限#数列の極限#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列{$x_n$},{$y_n$}を$x_1=y_1=1, x_{n+1}=\dfrac{2}{3}x_n+\dfrac{1}{6}y_n, y_{n+1}=\dfrac{1}{3}x_n+\dfrac{5}{6}y_n$で定めるとき、
(1)$x_{n+1}+αy_{n+1}=\beta(x_n+αy_n)$を満たす$\alpha,\beta$の組を2組求めよう。
(2)数列{$x_n$},{$y_n$}の一般項を求めよう。
(3)数列{$x_n$},{$y_n$}の極限を求めよう。
この動画を見る 

福岡教育大 連立漸化式

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=2,b_1=1$
$a_{n+1}=a_n-8b_n$
$b_{n+1}=a_n+7b_n$

出典:1989年福岡教育大学 過去問
この動画を見る 

数学「大学入試良問集」【13−7 数学的帰納法(13の倍数の証明)】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$n$を自然数とするとき、$4^{2n-1}+3^{n+1}$は$13$の倍数であることを示せ。
この動画を見る 

福井大(医)漸化式

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_1=1,a_2=3$であり,$n\geqq 2$とする.
$a_{n+1}-\dfrac{4n+2}{n+1}an+\dfrac{4n-4}{n}a_{n-1}=0$

(1)$b_n=a_{n+1}-\dfrac{2n}{n+1}a_n(n\geqq 1)$,$b_n$を$n$で表せ.
(2)$a_n$を求めよ.

福井大(医)過去問
この動画を見る 
PAGE TOP