288 数列の100以下の項を足し合わせる:漸化式とΣの面倒な問題もプログラムで楽々解決! #shorts - 質問解決D.B.(データベース)

288 数列の100以下の項を足し合わせる:漸化式とΣの面倒な問題もプログラムで楽々解決! #shorts

問題文全文(内容文):
288 数列の100以下の項を足し合わせる:漸化式とΣの面倒な問題もプログラムで楽々解決! #shorts
【問題文】次のプログラムの実行結果を答えよ。
※プログラムは動画内参照
単元: #情報Ⅰ(高校生)#数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#プログラミング#プログラムによる動的シミュレーション#数B
指導講師: めいちゃんねる
問題文全文(内容文):
288 数列の100以下の項を足し合わせる:漸化式とΣの面倒な問題もプログラムで楽々解決! #shorts
【問題文】次のプログラムの実行結果を答えよ。
※プログラムは動画内参照
投稿日:2024.06.19

<関連動画>

虚数単位の入った漸化式 学習院大

アイキャッチ画像
単元: #大学入試過去問(数学)#複素数平面#数列#漸化式#複素数平面#学校別大学入試過去問解説(数学)#数学(高校生)#数B#数C#学習院大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
2019学習院大学過去問題
$Z_1=1$
$Z_{n+1}=iZ_n+2$
(1)$Z_{2019}$
(2)$Z_n$が通る円の中心と半径
この動画を見る 

2022都立入試 整数問題証明(11の倍数)

アイキャッチ画像
単元: #数学(中学生)#数A#数Ⅱ#式と証明#整数の性質#約数・倍数・整数の割り算と余り・合同式#恒等式・等式・不等式の証明#数列#数列とその和(等差・等比・階差・Σ)#高校入試過去問(数学)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
2022都立入試 整数問題証明に関して解説していきます.
この動画を見る 

東大 レピュニット数

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#数列#数学的帰納法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$\overbrace{ 1111 + \cdots +11}^{3^n桁}$は$3^n$で割り切れるが
$3^{n+1}$では割り切れないことを示せ.

東大過去問
この動画を見る 

【数学B/数列】階差数列(階差数列を利用して数列の一般項を求める)

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 【ゼロから理解できる】高校数学・物理
問題文全文(内容文):
次の数列の一般項を求めよ。
(1)
$2,3,6,11,18,…$

(2)
$2,3,5,9,17,…$
この動画を見る 

福田の数学〜早稲田大学2022年商学部第1問(1)〜漸化式の解法

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#対数関数#数列#漸化式#数学的帰納法#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
${\large\boxed{1}}$(1)数列$\left\{a_n\right\}$が次の条件を満たしている。
$(\textrm{i})a_1=a_2=4$
$(\textrm{ii})a_{n+2}=a_n^{\log_2a_{n+1}} (n=1,2,3,\ldots)$
このとき、$\log_2(\log_2a_{10})=\boxed{\ \ ア\ \ }$である。

2022早稲田大学商学部過去問
この動画を見る 
PAGE TOP