14大阪府教員採用試験(数学:高3-1番 微分) - 質問解決D.B.(データベース)

14大阪府教員採用試験(数学:高3-1番 微分)

問題文全文(内容文):
3⃣
(1)$f(x)=\begin{eqnarray}
\left\{
\begin{array}{l}
logx \quad x \geqq 1 \\
ax^2+bx+1 \quad x<1
\end{array}
\right.
\end{eqnarray}$

x=1で微分可能となるようにa,bの値を定めよ。

$(i) \displaystyle \lim_{ x \to 1 } f(x) = f(1)$
$(ii)f'(1)$が存在する
単元: #微分とその応用#微分法#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
3⃣
(1)$f(x)=\begin{eqnarray}
\left\{
\begin{array}{l}
logx \quad x \geqq 1 \\
ax^2+bx+1 \quad x<1
\end{array}
\right.
\end{eqnarray}$

x=1で微分可能となるようにa,bの値を定めよ。

$(i) \displaystyle \lim_{ x \to 1 } f(x) = f(1)$
$(ii)f'(1)$が存在する
投稿日:2020.09.09

<関連動画>

大学入試問題#432「このタイプの証明はよくある」 横浜国立大学2014 #微分の応用 #不等式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#横浜国立大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$0 \lt x \lt 1$のとき
$(\displaystyle \frac{x+1}{2})^{x+1} \lt x^x$を示せ

出典:2014年横浜国立大学 入試問題
この動画を見る 

10奈良県教員採用試験(数学:6番 微分・微分方程式)

アイキャッチ画像
単元: #微分とその応用#微分法#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
6⃣$f(x+y)=f(x)f(y),f'(0)a≠0$
(1)f(0)を求めよ。
(2)y=f(x)は微分可能を」示し、関数f(x)を求めよ。
この動画を見る 

岩手大 微分 高校数学 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#数学(高校生)#岩手大学#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
岩手大学過去問題
$f(x)=-x^4+a(x-2)^2 \quad (a>0)$
(1)f(x)が極小値をもつためのaの範囲
(2)f(x)が極小値を持つとき、その極小値を与えるxの値をtとする。2<t<3を示せ。
(3)(2)のとき、f(t)>-27を示せ。
この動画を見る 

福田の数学〜京都大学2023年理系第5問〜回転体の体積

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#積分とその応用#面積・体積・長さ・速度#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ Oを原点とするxyz空間において、点Pと点Qは次の3つの条件(a),(b),(c)を満たしている。
(a):点Pはx軸上にある。
(b):点Qはyz平面上にある。
(c):線分OPと線分OQの長さの和は1である。
点Pと点Qが条件(a),(b),(c)を満たしながらくまなく動くとき、線分PQが通過してできる立体の体積を求めよ。

2023京都大学理系過去問
この動画を見る 

福田の数学〜慶應義塾大学2021年理工学部第1問〜直線群と通過範囲

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#図形と方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ $t$を実数とし、座標平面上の直線$l:(2t^2-4t+2)x-(t^2+2)y+4t+2=0$
を考える。

(1)直線$l$は$t$の値によらず、定点を通る。その定点の座標は$\boxed{\ \ ア\ \ }$である。

(2)直線$l$の傾きを$f(t)$とする。$f(t)$の値が最小となるのは$t=\boxed{\ \ イ\ \ }$
のときであり、最大となるのは$t=\boxed{\ \ ウ\ \ }$のときである。また、
$a$を実数とするとき、$t$に関する方程式$f(t)=a$がちょうど1個の
実数解をもつような$a$の値を全て求めると、$a=\boxed{\ \ エ\ \ }$である。

(3)$t$が実数全体を動くとき、直線$l$が通過する領域を$S$とする。また$k$を
実数とする。放物線$y=\displaystyle \frac{1}{2}(x-k)^2+\displaystyle \frac{1}{2}(k-1)^2$が領域$S$と共有点
を持つような$k$の値の範囲は$\boxed{\ \ オ\ \ } \leqq k \leqq \boxed{\ \ カ\ \ }$である。

2021慶應義塾大学理工学部過去問
この動画を見る 
PAGE TOP