14大阪府教員採用試験(数学:高3-1番 微分) - 質問解決D.B.(データベース)

14大阪府教員採用試験(数学:高3-1番 微分)

問題文全文(内容文):
3⃣
(1)$f(x)=\begin{eqnarray}
\left\{
\begin{array}{l}
logx \quad x \geqq 1 \\
ax^2+bx+1 \quad x<1
\end{array}
\right.
\end{eqnarray}$

x=1で微分可能となるようにa,bの値を定めよ。

$(i) \displaystyle \lim_{ x \to 1 } f(x) = f(1)$
$(ii)f'(1)$が存在する
単元: #微分とその応用#微分法#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
3⃣
(1)$f(x)=\begin{eqnarray}
\left\{
\begin{array}{l}
logx \quad x \geqq 1 \\
ax^2+bx+1 \quad x<1
\end{array}
\right.
\end{eqnarray}$

x=1で微分可能となるようにa,bの値を定めよ。

$(i) \displaystyle \lim_{ x \to 1 } f(x) = f(1)$
$(ii)f'(1)$が存在する
投稿日:2020.09.09

<関連動画>

福田の数学〜早稲田大学2021年商学部第1問(2)〜整式と不等式

アイキャッチ画像
単元: #大学入試過去問(数学)#微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$ 
(2)$n$を正の整数とする。$f(x)$は$x$の$n+1$次式で表される関数で、$x$が$0$以上$n$以下の整数のとき$f(x)=0$であり、$f(n+1)=n+1$である。このとき、
$\displaystyle \sum_{k=0}^n\frac{(1-\sqrt2)^k}{f'(k)} \gt 2^{2021}$
を満たす最小の$n$は$\boxed{\ \ イ\ \ }$である。

2021早稲田大学商学部過去問
この動画を見る 

#17数検1級1次 過去問 微分

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#微分とその応用#微分法#数学検定#数学検定1級#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$

$0\lt \theta\lt \dfrac{\pi}{2}$,
$x=\sin\theta$
$y=-\log\left(\tan\dfrac{\theta}{2}\right)-\cos\theta$とする.
$\dfrac{d^2y}{dx^2}$を$\theta$で表せ.
この動画を見る 

【数Ⅲ】【微分とその応用】n次導関数基本 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#微分法#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
次の関数の第3次導関数を求めよ。
y= √ (2x+1)
以下、略

次のことが成り立つことを証明せよ。
y= x√ (1+x²)のとき、(1+x²)y'' + xy' = 4y
以下、略
この動画を見る 

【数Ⅲ】【微分とその応用】平均値の定理の利用3 ※問題文は概要欄

アイキャッチ画像
単元: #微分とその応用#接線と法線・平均値の定理#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#微分法の応用
指導講師: 理数個別チャンネル
問題文全文(内容文):
k、αは定数、関数f(x)は微分可能であるとする。
lim[x→∞]f'(x)=αのとき、lim[x→∞]{f(x+k)-f(x)}を求めよ。
この動画を見る 

微分方程式⑧-1【非同次2階微分方程式の公式】(高専数学、数検1級)

アイキャッチ画像
単元: #微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
非同次2階微分方程式の公式を解説していきます.
この動画を見る 
PAGE TOP