福田の数学〜東京大学2023年理系第5問〜整式の割り算と2重因子をもつ条件 - 質問解決D.B.(データベース)

福田の数学〜東京大学2023年理系第5問〜整式の割り算と2重因子をもつ条件

問題文全文(内容文):
$\Large\boxed{5}$ 整式f(x)=$(x-1)^2(x-2)$を考える。
(1)g(x)を実数を係数とする整式とし、g(x)をf(x)で割った余りをr(x)とおく。
$g(x)^7$をf(x)で割った余りと$r(x)^7$をf(x)で割った余りが等しいことを示せ。
(2)a,bを実数とし、h(x)=$x^2$+ax+b とおく。$h(x)^7$をf(x)で割った余りを$h_1(x)$とおき、$h_1(x)^7$をf(x)で割った余りを$h_2(x)$とおく。$h_2(x)$がh(x)に等しくなるようなa,bの組を全て求めよ。

2023東京大学理系過去問
単元: #数Ⅱ#大学入試過去問(数学)#式と証明#複素数と方程式#整式の除法・分数式・二項定理#恒等式・等式・不等式の証明#剰余の定理・因数定理・組み立て除法と高次方程式#微分とその応用#微分法#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{5}$ 整式f(x)=$(x-1)^2(x-2)$を考える。
(1)g(x)を実数を係数とする整式とし、g(x)をf(x)で割った余りをr(x)とおく。
$g(x)^7$をf(x)で割った余りと$r(x)^7$をf(x)で割った余りが等しいことを示せ。
(2)a,bを実数とし、h(x)=$x^2$+ax+b とおく。$h(x)^7$をf(x)で割った余りを$h_1(x)$とおき、$h_1(x)^7$をf(x)で割った余りを$h_2(x)$とおく。$h_2(x)$がh(x)に等しくなるようなa,bの組を全て求めよ。

2023東京大学理系過去問
投稿日:2023.03.10

<関連動画>

基本問題

アイキャッチ画像
単元: #数Ⅱ#式と証明#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,yを実数とする.
$ x^2+y^2=7 $
$ x^3+y^3=10 $である.
x+yはいくつであるか求めよ.
この動画を見る 

福田のわかった数学〜高校2年生011〜不等式の証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{II}$ 不等式の証明
$|x| \leqq 1,|y| \leqq 1$のとき、不等式
$0 \leqq x^2+y^2-2x^2y^2+$$2xy\sqrt{1-x^2}\sqrt{1-y^2}$$ \leqq 1$
が成り立つことを示せ。
この動画を見る 

福田のおもしろ数学394〜6次の多項式に関する証明

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 福田次郎
問題文全文(内容文):
6次の多項式$P(x)$について

$0\lt a \lt b$が

$P(a)=P(-a),P(b)=P(-b),P'(0)=0$

を満たしている。

任意の$x$に対し$P(x)=P(-x)$が

成り立つことを証明せよ。
この動画を見る 

【高校数学】恒等式とは?分かりやすく~どこよりも丁寧に~ 1-7【数学Ⅱ】

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#数学(高校生)
指導講師: 【楽しい授業動画】あきとんとん
問題文全文(内容文):
恒等式とは何なのか?を説明しています。
この動画を見る 

06愛知県教員採用試験(数学:6番 指数)

アイキャッチ画像
単元: #数Ⅱ#複素数と方程式#指数関数と対数関数#整式の除法・分数式・二項定理#剰余の定理・因数定理・組み立て除法と高次方程式#指数関数#その他#数学(高校生)#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{6}$
$x$の方程式$4^x-2a\ 2^x+2a^2-a-6=0$が
正負が解を1つずつもつとき,
$a$の値の範囲を求めよ.
この動画を見る 
PAGE TOP