日本医科大学 バーゼル問題 高校数学 Japanese university entrance exam questions - 質問解決D.B.(データベース)

日本医科大学 バーゼル問題 高校数学 Japanese university entrance exam questions

問題文全文(内容文):
日本医科大学過去問題
$abc=1$ $a>0,b>0,c>0$
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geqq \sqrt{a} + \sqrt{b} +\sqrt{c}$を示せ
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c} - \sqrt{a} - \sqrt{b} -\sqrt{c}$
$n \to \infty \frac{3}{2} \leqq 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots + \frac{1}{n^2} \leqq 2$
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#日本医科大学#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
日本医科大学過去問題
$abc=1$ $a>0,b>0,c>0$
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \geqq \sqrt{a} + \sqrt{b} +\sqrt{c}$を示せ
$\frac{1}{a}+\frac{1}{b}+\frac{1}{c} - \sqrt{a} - \sqrt{b} -\sqrt{c}$
$n \to \infty \frac{3}{2} \leqq 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots + \frac{1}{n^2} \leqq 2$
投稿日:2018.04.19

<関連動画>

数学「大学入試良問集」【17−2 Sn入り漸化式と極限】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#熊本大学#数学(高校生)#数Ⅲ
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
数列$\{a_n\}$について、$S_n=\displaystyle \sum_{k=1}^n a_k$ $n=1,2,3,・・・,S_0=0$とおく。
$a_n=S_{n-1}+n・2^n$ $n=1,2,3,・・・$ が成り立つとき、次の各問いに答えよ。
(1)$S_n$を$n$の式で表せ。
(2)極限値$\displaystyle \lim_{ n \to \infty }\displaystyle \sum_{k=1}^n\displaystyle \frac{2^k}{a_k}$を求めよ。
この動画を見る 

大学入試問題#86 防衛医科大学(1988) 極限

アイキャッチ画像
単元: #大学入試過去問(数学)#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#数学(高校生)#数Ⅲ#防衛医科大学
指導講師: ますただ
問題文全文(内容文):
$0 \lt a$:実数
$\displaystyle \lim_{ n \to \infty }(a^n+(1+a)^n)^{\frac{1}{n}}$を求めよ。

出典:1988年防衛医科大学 入試問題
この動画を見る 

京都大 微分 合成関数 Mathematics Japanese university entrance exam Kyoto University

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#微分法と積分法#関数(分数関数・無理関数・逆関数と合成関数)#学校別大学入試過去問解説(数学)#京都大学#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
1993年 国立大学法人京都大学

$f(x)=x^3-3ax$

$(1)f(x)=t$が相違3実根をもつ$a,t$の条件
$(2)g(x)=f(f(x)),g(x)=0$
が相違9実根をもつ$a$の範囲
この動画を見る 

【数Ⅲ】【関数】数列{an}に対して、lim(n→∞)⁡(an+5)/(2an+1)=3であるとき、lim(n→∞)⁡anを求めよ。

アイキャッチ画像
単元: #関数と極限#数列の極限#数学(高校生)#数Ⅲ
教材: #4S数学#4S数学ⅢのB問題解説#中高教材#極限
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列$\{a_n\}$に対して、

$\displaystyle \lim_{n\rightarrow\infty}\dfrac{a_n+5}{2a_n+1}=3$であるとき、$\displaystyle \lim_{n\rightarrow\infty}a_n$を求めよ。
この動画を見る 

【誘導あり:概要欄】大学入試問題#256 神戸大学2012 #極限 #はさみうちの定理

アイキャッチ画像
単元: #数Ⅱ#大学入試過去問(数学)#指数関数と対数関数#指数関数#対数関数#関数と極限#数列の極限#学校別大学入試過去問解説(数学)#神戸大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$2 \leqq n$自然数
$S_n=\displaystyle \sum_{k=1}^{n^3-1}\displaystyle \frac{1}{k\ log\ k}$

(1)
$2 \leqq k$:自然数
$\displaystyle \frac{1}{(k+1)log(k+1)} \lt \displaystyle \int_{k}^{k+1}\displaystyle \frac{dx}{x\ log\ x} \lt \displaystyle \frac{1}{k\ log\ k}$

(2)
$\displaystyle \lim_{ n \to \infty }S_n$を求めよ。

出典:2012年神戸大学 入試問題
この動画を見る 
PAGE TOP