福田の一夜漬け数学〜数列・漸化式(2)〜高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜数列・漸化式(2)〜高校2年生

問題文全文(内容文):
次の漸化式を解け。

$\begin{eqnarray}
\left\{
\begin{array}{l}
a_1=1\\
a_{n+1}=3a_n+2^n\\
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
a_1=1\\
a_{n+1}=2a_n+n^2+2n\\
\end{array}
\right.
\end{eqnarray}$
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の漸化式を解け。

$\begin{eqnarray}
\left\{
\begin{array}{l}
a_1=1\\
a_{n+1}=3a_n+2^n\\
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
a_1=1\\
a_{n+1}=2a_n+n^2+2n\\
\end{array}
\right.
\end{eqnarray}$
投稿日:2018.05.06

<関連動画>

数学「大学入試良問集」【13−7 数学的帰納法(13の倍数の証明)】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#信州大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$n$を自然数とするとき、$4^{2n-1}+3^{n+1}$は$13$の倍数であることを示せ。
この動画を見る 

数学「大学入試良問集」【13−4 漸化式(逆数型)】を宇宙一わかりやすく

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学#数B
指導講師: ハクシ高校【数学科】良問演習チャンネル
問題文全文(内容文):
$a_1=1,a_{n+1}=\displaystyle \frac{a_n}{4a_n+1}(n=1,2,・・・)$で定まる数列$\{a_n\}$に関して、次の各問に答えよ。
(1)
$\displaystyle \frac{1}{a_n}$を$n$の式で表せ。

(2)
$\displaystyle \sum_{k=1}^n\left[ \dfrac{ 12 }{ a_k-a_{k+1} }+9 \right]$を$n$の式で表せ。
この動画を見る 

【数B】確率漸化式:3つの数字2,3,4をn個並べてn桁の整数をつくる。その中で、各位の数字の和が偶数であるものの個数をa[n]とする。(1)a[n+1]をa[n]の式で表せ。(2)a[n]を求めよ

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
3つの数字2,3,4をn個並べてn桁の整数をつくる。その中で、各位の数字の和が偶数であるものの個数を$a_n$とする。
(1)$a_{n+1}$を$a_n$の式で表せ。
(2)$a_n$を求めよ
この動画を見る 

【数B】確率漸化式:さいころをn回投げたとき1の目が偶数回出る確率をp[n]とする(中略) (1)p1を求めよ。(2)p[n+1]をp[n]で表せ。(3)p[n] (n=1,2,3,..)を求めよ。

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
さいころをn回投げたとき1の目が偶数回出る確率を$p_n$とする。ただし、1の目が1回も出なかった場合は偶数回出たと考えることにする。
(1)$p_1$を求めよ。
(2)$p_{n+1}$を$p_n$で表せ。
(3)$p_n$ (n=1,2,3,..)を求めよ。
この動画を見る 

福田の一夜漬け数学〜数列・漸化式(6)その他色々〜高校2年生

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の漸化式を解け。(すべて$a_1=1$とする)
①$a_{n+1}=\displaystyle \frac{a_n}{4a_n-1}$

②$a_{n+1}=2\displaystyle \sqrt{a_n}$

③$a_{n+1}=2(n+1)a_n$

④$a_{n+1}=\displaystyle \frac{4a_n+8}{a_n+6}$
この動画を見る 
PAGE TOP