福田の一夜漬け数学〜数列・漸化式(2)〜高校2年生 - 質問解決D.B.(データベース)

福田の一夜漬け数学〜数列・漸化式(2)〜高校2年生

問題文全文(内容文):
次の漸化式を解け。

$\begin{eqnarray}
\left\{
\begin{array}{l}
a_1=1\\
a_{n+1}=3a_n+2^n\\
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
a_1=1\\
a_{n+1}=2a_n+n^2+2n\\
\end{array}
\right.
\end{eqnarray}$
単元: #数列#数列とその和(等差・等比・階差・Σ)#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):
次の漸化式を解け。

$\begin{eqnarray}
\left\{
\begin{array}{l}
a_1=1\\
a_{n+1}=3a_n+2^n\\
\end{array}
\right.
\end{eqnarray}$

$\begin{eqnarray}
\left\{
\begin{array}{l}
a_1=1\\
a_{n+1}=2a_n+n^2+2n\\
\end{array}
\right.
\end{eqnarray}$
投稿日:2018.05.06

<関連動画>

【高校数学】 数B-77 階差数列③

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①数列$1,2,4,9,19,36,・・・$の一般項を求めよう.
この動画を見る 

福田のおもしろ数学411〜漸化式で定まる数列の2020項までの和と2030項までの和から2025項までの和を求める

アイキャッチ画像
単元: #数列#漸化式#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

数列$\{a_n\}$は$a_n=a_{n-1}-a_{n-2} (n\geqq 3)$を

満たしている。

$\displaystyle \sum_{n=1}^{2020}=2030$ $\quad $ $\displaystyle \sum_{n=1}^{2030}=2020$

を満たすとき

$\displaystyle \sum_{n=1}^{2025} a_n$の値を求めよ。
    
この動画を見る 

二項定理を使ってあることに気付ける?【2017年一橋大学】

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#大学入試過去問(数学)#数と式#式と証明#式の計算(整式・展開・因数分解)#恒等式・等式・不等式の証明#数列#漸化式#学校別大学入試過去問解説(数学)#一橋大学#数学(高校生)#数B
指導講師: 数学・算数の楽しさを思い出した / Ken
問題文全文(内容文):
$ P(0)=1,P(x+1)-P(x)=2x$を満たす整式$P(x)$を求めよ。

2017一橋大過去問
この動画を見る 

15和歌山県教員採用試験(数学:4番 帰納法)

アイキャッチ画像
単元: #数列#数学的帰納法#その他#数学(高校生)#数B#教員採用試験
指導講師: ますただ
問題文全文(内容文):
$\boxed{4}$
$n \gets IN$
$3^n$と$5n+2$の大小を比較せよ.
この動画を見る 

富山県立大 数学的帰納法・二項展開・合同式 Mathematics Japanese university entrance exam

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学的帰納法#学校別大学入試過去問解説(数学)#数学(高校生)#数B#富山県立大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$13^n+2・23^{n-1}$は常にある数の倍数であることを示せ

出典:富山県立大学 過去問
この動画を見る 
PAGE TOP