福田の数学〜早稲田大学2023年教育学部第3問〜関数の増減と回転体の体積 - 質問解決D.B.(データベース)

福田の数学〜早稲田大学2023年教育学部第3問〜関数の増減と回転体の体積

問題文全文(内容文):
$\Large\boxed{3}$ 実数$a$,$b$>0に対し、$a$≦$b$の場合は$a$≦$x$≦$b$の範囲、$a$>$b$の場合は$b$≦$x$≦$a$の範囲における$y$=$\log x$のグラフを$C_{a,b}$とする。このとき、次の問いに答えよ。
(1)点(2,-1)と$C_{2,b}$上の点との距離の最小値を$b$を用いて表せ。
(2)直線$x$=$a$と直線$x$=$b$の間で、$C_{a,b}$と$x$軸によって囲まれる部分を$x$軸の周りに1回転して得られる立体の体積を$S_{a,b}$とする。$S_{1,b}$を$b$を用いて表せ。
(3)$S_{a,b}$を(2)で定義したものとする。$S_{a,a+1}$が最小値をとる$a$の値を求めよ。
単元: #大学入試過去問(数学)#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#立体図形#体積・表面積・回転体・水量・変化のグラフ#早稲田大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{3}$ 実数$a$,$b$>0に対し、$a$≦$b$の場合は$a$≦$x$≦$b$の範囲、$a$>$b$の場合は$b$≦$x$≦$a$の範囲における$y$=$\log x$のグラフを$C_{a,b}$とする。このとき、次の問いに答えよ。
(1)点(2,-1)と$C_{2,b}$上の点との距離の最小値を$b$を用いて表せ。
(2)直線$x$=$a$と直線$x$=$b$の間で、$C_{a,b}$と$x$軸によって囲まれる部分を$x$軸の周りに1回転して得られる立体の体積を$S_{a,b}$とする。$S_{1,b}$を$b$を用いて表せ。
(3)$S_{a,b}$を(2)で定義したものとする。$S_{a,a+1}$が最小値をとる$a$の値を求めよ。
投稿日:2023.10.19

<関連動画>

11大阪府教員採用試験(数学:2番 微積)

アイキャッチ画像
単元: #微分とその応用#積分とその応用#微分法#定積分#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
2⃣
(1)$y=x^x(x>0)$
$\frac{dy}{dx}$を求めよ。
(2)$\displaystyle \lim_{ n \to \infty } \frac{1}{\sqrt n}( \frac{1}{\sqrt (n+1)} +\frac{1}{\sqrt (n+2)} + \cdots + \frac{1}{\sqrt (2n)} )$
この動画を見る 

東京電機大 最大値・最小値

アイキャッチ画像
単元: #数Ⅰ#数Ⅱ#2次関数#2次関数とグラフ#三角関数#三角関数とグラフ#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#数学(高校生)#数Ⅲ
指導講師: 鈴木貫太郎
問題文全文(内容文):
x,yを実数とする.
$x^2+2y^2+4y=0$を満たすとき,$2x-y$の最大値・最小値を求めよ.

東京電機大過去問
この動画を見る 

19奈良県教員採用試験(数学:高校1番 微分)

アイキャッチ画像
単元: #微分とその応用#微分法#その他#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
高1⃣類題
$f(x)=x \quad sinx がx=aで微分可能を示せ$
この動画を見る 

福田のわかった数学〜高校3年生理系108〜変化率(3)水の問題(2)

アイキャッチ画像
単元: #微分とその応用#微分法#関数の変化(グラフ・最大最小・方程式・不等式)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
数学$\textrm{III}$ 変化率(3) 水の問題(2)
右図(※動画参照)のような直円錐の容器に水が満たされている。下側から$2cm^3$秒
の割合で水が流出する。水面の高さが8cmになった瞬間の水面の下降する
速度と水面の面積が減少する速度を求めよ。
この動画を見る 

福田の数学〜慶應義塾大学2022年商学部第1問(2)〜三角不等式の一般解

アイキャッチ画像
単元: #大学入試過去問(数学)#三角関数#三角関数とグラフ#微分とその応用#関数の変化(グラフ・最大最小・方程式・不等式)#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{1}}$(2)xを変数とする2次方程式$x^2+(2\sqrt2\cos\theta)x+\sqrt2\sin\theta=0$が
異なる2つの実数解をもつような実数$\theta$の範囲は$\boxed{\ \ ア\ \ }$である。

2022慶應義塾大学商学部過去問
この動画を見る 
PAGE TOP