【数B】数列:1,6,15,28,45,…の一般項を求めよ。階差数列の解法紹介!! - 質問解決D.B.(データベース)

【数B】数列:1,6,15,28,45,…の一般項を求めよ。階差数列の解法紹介!!

問題文全文(内容文):
数列:1,6,15,28,45,…の一般項を求めよ。
チャプター:

0:00 オープニング
0:05 階差数列と一般項の公式
2:34 問題解説

単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)
教材: #高校ゼミスタンダード#高校ゼミスタンダード数B#中高教材
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列:1,6,15,28,45,…の一般項を求めよ。
投稿日:2020.06.09

<関連動画>

【数B】高2生必見!! 2019年度8月 第2回 K塾高2模試 大問6_数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#全統模試(河合塾)#数学(高校生)
指導講師: 理数個別チャンネル
問題文全文(内容文):
数列{$a_n$}($n=1,2,3,...$)は初項-8、公差4の等差数列であり、数列{$b_n$} ($n=1,2,3,...$)は初項から第n項までの和が$S_n\dfrac{3^n}{2}(n=1,2,3,...)$で与えられ る数列である。
(1)数列{$a_n$}の一般項$a_n$を求めよ。また、数列{$a_n$}の初項から第n項までの 和を求めよ。 (2)$\displaystyle \sum_{k=1}^n (a_k)^2$を求めよ。
(3)数列{$b_n$}の一般項$b_n$を求めよ。 (4)nを3以上の整数とするとき、$\displaystyle \sum_{k=1}^n \vert a_k b_k \vert$を求めよ。
この動画を見る 

早稲田(商)特殊な数列の和

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
正の整数$k$に対して$a_k$を$\sqrt{k}$にもっとも近い整数とする.
これを解け.
(例)$a_5=2,a_{20}=4$

(1)$\displaystyle \sum_{k=1}^{12}a_k$
(2)$\displaystyle \sum_{k=1}^{1998}a_k$

1998早稲田(商)
この動画を見る 

大学入試問題#53 横浜市立大学(2020) 数列

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数列とその和(等差・等比・階差・Σ)#学校別大学入試過去問解説(数学)#数学(高校生)#数B#横浜市立大学
指導講師: ますただ
問題文全文(内容文):
$a_1=1$
$a_{n+1}=\displaystyle \frac{a_n}{2n\ a_n+3}$で定まる数列の一般項$a_n$を求めよ

出典:2020年横浜市立大学 入試問題
この動画を見る 

福田のおもしろ数学538〜数列の一般項を1つの式で表す

アイキャッチ画像
単元: #数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

数列

$1,1,2,2,3,3,4,4,\cdots $

の一般項を$1$つの式で表せ。
    
この動画を見る 

福田の数学〜慶應義塾大学看護医療学部2025第2問(3)〜数学的帰納法

アイキャッチ画像
単元: #大学入試過去問(数学)#数列#数学的帰納法#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数B
指導講師: 福田次郎
問題文全文(内容文):

$\boxed{2}$

(3)自然数$n$に対して、

$3^n-2n-1$が

$4$の倍数であることの数学的帰納法を

用いた証明を記述しなさい。

$2025$年慶應義塾大学看護医療学部過去問題
この動画を見る 
PAGE TOP