高校数学:数学検定準1級1次:問題5 :部分積分 - 質問解決D.B.(データベース)

高校数学:数学検定準1級1次:問題5 :部分積分

問題文全文(内容文):
$\int_0^2 (\frac{x^2}{2}+3x)e^{\frac{x}{2}} dx$

不定積分、定積分を求めよ
チャプター:

0:00 問題5①の解説
5:16 問題5②の解説

単元: #積分とその応用#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師: 理数個別チャンネル
問題文全文(内容文):
$\int_0^2 (\frac{x^2}{2}+3x)e^{\frac{x}{2}} dx$

不定積分、定積分を求めよ
投稿日:2023.12.11

<関連動画>

【数Ⅲ-141】分数関数の積分①

アイキャッチ画像
単元: #積分とその応用#不定積分#数学(高校生)#数Ⅲ
指導講師: とある男が授業をしてみた
問題文全文(内容文):
数Ⅲ(分数関数の積分①)

Q次の不定積分を求めよ

①$\int \frac{x-2}{x+1}dx$

➁$\int \frac{x^2-x}{x+1}dx$

③$\int \frac{-x+8}{x^2-x-6}dx$
この動画を見る 

福田のおもしろ数学454〜積分に関するシュワルツの不等式の証明と等号成立条件

アイキャッチ画像
単元: #数Ⅱ#式と証明#恒等式・等式・不等式の証明#積分とその応用#不定積分#定積分#数学(高校生)#数Ⅲ
指導講師: 福田次郎
問題文全文(内容文):

$p\leqq x \leqq q$で定義された連続関数$f(x),g(x)$に対して

$\left(\displaystyle \int_{p}^{q} f(x)^2 dx\right)\left(\displaystyle \int_{p}^{q}g(x)^2 dx \right) \geqq \left(\displaystyle \int_{p}^{q} f(x)g(x)dx\right)^2$

を証明して下さい。

また等号成立条件も調べて下さい。
   
この動画を見る 

大学入試問題#843「解き方色々ありそう」 #筑波大学(2013)  #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#数学(高校生)#筑波大学#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{1}{\sin x \cos x} dx$

出典:2013年筑波大学 入試問題
この動画を見る 

大学入試問題#564「構想力が鍛えられる問題!」 東京帝国大学(1934) #不定積分

アイキャッチ画像
単元: #大学入試過去問(数学)#積分とその応用#不定積分#学校別大学入試過去問解説(数学)#東京大学#数学(高校生)#数Ⅲ
指導講師: ますただ
問題文全文(内容文):
$\displaystyle \int \displaystyle \frac{3x+4}{\sqrt{ x^2+2x+5 }}\ dx$

出典:1934年東京帝国大学 入試問題
この動画を見る 

練習問題1(数検準1級、教員採用試験 レベル)

アイキャッチ画像
単元: #数学検定・数学甲子園・数学オリンピック等#積分とその応用#不定積分#その他#数学検定#数学検定準1級#数学(高校生)#数Ⅲ#教員採用試験
指導講師: ますただ
問題文全文(内容文):
(1)$\int \frac{x}{cos^2x} dx$
(2)$\int \frac{x}{sin^2x} dx$
この動画を見る 
PAGE TOP