【数C】【平面上の曲線】x²/16+y²/25 =1とy軸の交点をA、Bとする。楕円上の点をPとし、直線PA, PBとx軸の交点をそれぞれQ, R とするとき、 OQ・ORの値は一定であることを示せ。 - 質問解決D.B.(データベース)

【数C】【平面上の曲線】x²/16+y²/25 =1とy軸の交点をA、Bとする。楕円上の点をPとし、直線PA, PBとx軸の交点をそれぞれQ, R とするとき、 OQ・ORの値は一定であることを示せ。

問題文全文(内容文):

原点を $\mathrm{O}$、楕円 $\displaystyle \frac{x^2}{16}+\frac{y^2}{25}=1$ と $y$ 軸の交点を $\mathrm{A,B}$ とする。
$\mathrm{A,B}$ 以外の楕円上の点を$\mathrm{P}$ とし、直線 $\mathrm{PA,\ PB}$ と $x$ 軸の交点をそれぞれ $\mathrm{Q,R}$ とするとき、
$\mathrm{OQ \cdot OR}$ の値は一定であることを示せ。
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):

原点を $\mathrm{O}$、楕円 $\displaystyle \frac{x^2}{16}+\frac{y^2}{25}=1$ と $y$ 軸の交点を $\mathrm{A,B}$ とする。
$\mathrm{A,B}$ 以外の楕円上の点を$\mathrm{P}$ とし、直線 $\mathrm{PA,\ PB}$ と $x$ 軸の交点をそれぞれ $\mathrm{Q,R}$ とするとき、
$\mathrm{OQ \cdot OR}$ の値は一定であることを示せ。
投稿日:2025.05.27

<関連動画>

【数C】【平面上の曲線】2点 A(- 2, 0) , B(2, 0) と楕円 x²/36 + y²/9 = 1上の点Qでできる△AQBの重心Pの軌跡を求めよ。

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
教材: #4S数学#中高教材#4S数学CのB問題解説#式と曲線
指導講師: 理数個別チャンネル
問題文全文(内容文):
$2$ 点 $\mathrm{A}(-2,\ 0),\ \mathrm{B}(2,\ 0)$と、

楕円 $\displaystyle \frac{x^2}{36}+\frac{y^2}{9}=1$ 上の点$\mathrm{Q}$でできる

$\triangle \mathrm{AQB}$ の重心$\mathrm{P}$の軌跡を求めよ。
この動画を見る 

福田の数学〜早稲田大学2021年人間科学部第7問〜双曲線と図形問題

アイキャッチ画像
単元: #数Ⅰ#大学入試過去問(数学)#平面上の曲線#図形と計量#2次曲線#学校別大学入試過去問解説(数学)#早稲田大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
${\Large\boxed{7}}$ 原点を$O$とする座標平面上で、2点$(\sqrt5,0),$$(-\sqrt5,0)$を焦点とし、2点$A(1,0),$$A'(-1,0)$を頂点とする双曲線を$H$とする。$H$の方程式を$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$と表すとき、$a^2=\boxed{\ \ ネ\ \ },$ $b^2=\boxed{\ \ ノ\ \ }$である。双曲線Hの漸近線のうち、傾きが正であるものの方程式は$y=\boxed{\ \ ハ\ \ }x$である。$点P(p,q)$は双曲線$H$の$第1象限$の部分を動く点とする。$点P$から$x軸$に下ろした垂線の足を$Q$、$直線PQ$と$双曲線H$の漸近線との交点のうち、$第1象限$にあるものを$R$とする。$点P$における$H$の接線と$直線x=1$との交点を$M$とし、$直線OM$と$直線AP$との交点を$N$とする。$三角形OQR$の面積を$S$、$三角形OAN$の面積を$T$とするとき、$\frac{T}{S}$は、$p=\boxed{\ \ ヒ\ \ }$のとき、最大値$\frac{\boxed{\ \ フ\ \ }}{\boxed{\ \ ヘ\ \ }}$をとる。

2021早稲田大学人間科学部過去問
この動画を見る 

福田の1.5倍速演習〜合格する重要問題101〜慶應義塾大学2020年度環境情報学部第1問(1)〜不定方程式の解

アイキャッチ画像
単元: #数Ⅰ#数A#数Ⅱ#大学入試過去問(数学)#数と式#平面上の曲線#一次不等式(不等式・絶対値のある方程式・不等式)#整数の性質#ユークリッド互除法と不定方程式・N進法#三角関数#加法定理とその応用#2次曲線#学校別大学入試過去問解説(数学)#慶應義塾大学#数学(高校生)#数C
指導講師: 福田次郎
問題文全文(内容文):
$\Large\boxed{1}$ (1)正の実数xとyが9$x^2$+16$y^2$=144 を満たしているとき、xyの最大値は$\boxed{\ \ アイ\ \ }$である。

2020慶應義塾大学環境情報学部過去問
この動画を見る 

【数学Ⅲ】二次曲線(式と曲線)~まとめ・イメージ・公式の意味~

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: カサニマロ【べんとう・ふきのとうの授業動画】
問題文全文(内容文):
【数学Ⅲ】二次曲線(式と曲線)まとめ動画です
-----------------
$y^2=8x$のグラフ $y^2=3x$のグラフを描け
この動画を見る 

【高校数学】数Ⅲ-39 2次曲線と離心率

アイキャッチ画像
単元: #平面上の曲線#2次曲線#数学(高校生)#数C
指導講師: とある男が授業をしてみた
問題文全文(内容文):
①点$F(1,0)$と直線$x=4$からの距離の比が
$1:2$であるような点$P$の軌跡を求めよ.
この動画を見る 
PAGE TOP