群馬大(医)整数問題 完全数の約数の総和 約数の逆数の総和 - 質問解決D.B.(データベース)

群馬大(医)整数問題 完全数の約数の総和 約数の逆数の総和

問題文全文(内容文):
$k$自然数
$2^k-1$が素数であるとする。
$a=2^{k-1}(2^k-1)$のすべての約数を$a_{1},a_{2},a_{3},…,a_{n}$

(1)
$\displaystyle \sum_{i=1}^n a_i$

(2)
$\displaystyle \sum_{i=1}^n \displaystyle \frac{1}{a_i}$

出典:1986年群馬大学 大学院医学系研究科 医学部医学科 過去問
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#学校別大学入試過去問解説(数学)#数学(高校生)#群馬大学
指導講師: 鈴木貫太郎
問題文全文(内容文):
$k$自然数
$2^k-1$が素数であるとする。
$a=2^{k-1}(2^k-1)$のすべての約数を$a_{1},a_{2},a_{3},…,a_{n}$

(1)
$\displaystyle \sum_{i=1}^n a_i$

(2)
$\displaystyle \sum_{i=1}^n \displaystyle \frac{1}{a_i}$

出典:1986年群馬大学 大学院医学系研究科 医学部医学科 過去問
投稿日:2019.07.10

<関連動画>

2020年問題 2020整数問題 その2

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
連続$n$個の自然数の和が$2020$となる$n$と先頭の自然数$a$
$(a,n)$の組を全て求めよ
この動画を見る 

整数問題 華麗な論法

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
$2021m+1=7^n$を満たす自然数$m,n$が存在することを示せ.
この動画を見る 

整数問題 一橋大(類)

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数学(高校生)
指導講師: 鈴木貫太郎
問題文全文(内容文):
すべての自然数$n$について$7^n+an+b$が$36$の倍数となる$36$以下の自然数$a,b$を求めよ.

一橋大(類)過去問
この動画を見る 

帝京大(医)漸化式 合同式

アイキャッチ画像
単元: #数A#大学入試過去問(数学)#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#漸化式#学校別大学入試過去問解説(数学)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$a_n=(1+\sqrt{ 2 })^n+(1-\sqrt{ 2 })^n$
$a_n$は整数であることを示せ
$a_{100}$を3で割った余り

出典:2005年帝京大学医学部 過去問
この動画を見る 

ウィルソンの定理

アイキャッチ画像
単元: #数A#整数の性質#約数・倍数・整数の割り算と余り・合同式#数列#数列とその和(等差・等比・階差・Σ)#数学(高校生)#数B
指導講師: 鈴木貫太郎
問題文全文(内容文):
$22!$を$23$で割った余りを求めよ.

$100!$を$101$で割った余りを求めよ.
この動画を見る 
PAGE TOP